General Dialogue Topics

NAIST
Assistant Professor
Koichiro Yoshino

Nara Institute of Science and Technology Augmented Human Communication Laboratory PRESTO, Japan Science and Technology Agency

Conventional dialogue systems

What NCM does

Speech recognition with DNN in early stage

Conventional ASR architecture

$$\underset{W}{\operatorname{argmax}} P(W|X) = \underset{W}{\operatorname{argmax}} \underbrace{P(X|W)P(W)}_{\text{Acoustic Language}}$$

W is word sequence and X is speech

GMM-HMM

DNN-HMM

What is output of the ASR?

N-best hypotheses of speech recognition results

 with posterior probabilities, which is calculated from likelihoods of acoustic model and language model

```
0.7 I want to take a flight to Austin
0.2 I want to take a flight to Boston
0.05 I want to take applied to Austin
...
```

ASR results often contain errors

- Insertion, deletion, replacement, ...
- We have to consider the error in post processes (SLU, DM, ...)

Spoken language understanding (SLU) and dialogue management (DM)

Language understanding

Convert the user utterance into machine-readable expressions

Dialogue management

Decide the next system action from the SLU result and dialogue history

Dialogue state tracking and action decision

- As mentioned before, ASR results often contain errors
 - SLU results are probably affected by the ASR error
 - SLU module also causes error

Dialogue state tracking

Action decision

The system need to select "ask \$TO_GO" or "confirmation" action if the recognition result may contain critical errors

\$TO_GO=Namba

\$LINE=???

Language generation systems

Generate a sentence given a system action

Difficulty of generation

- Appropriateness: Outputs contain the contents that is decided by the dialogue manager
- Naturalness: Outputs is natural
- Understandability: Outputs should be easy to understand
- Variation: Outputs contain some variations of expression

Problems in existing systems

Turn-taking is not natural

Based on voice activity detection (VAD)

Need to define ontology

Handcrafting for any new domains

Dialogue strategy in a new space

RL-based optimization can be used if we define states and actions

Controllable neural language generation

Only using cross-entropy loss

Our approaches

- Turn-taking is not natural
 - Based on understanding results of the system
- Need to define ontology
 - Design of language understanding space
- Dialogue strategy in a new space
 - Information seeking for argumentation dialogue
- Controllable neural language generation
 - Use seqGAN and label aware objective

Incremental understanding system

Incremental system that receives a word on each time-step

- Multi-layer perceptron classifiers given the hidden layer of LSTM
- Cambridge restaurant navigation system (DSTC2)

Re-labeling

 Make a training data of turn taking by comparing DST results on any time steps with the last result

Any differences?

- Yes → the system still need to wait future words
- No → the system can take a turn at this moment!

Incremental turn taking decider

- Comparing NLU results on between current input and the point the utterance ends
 - No difference: 0 / Different: 1 → supervised learning

Results on DSTC2 dataset

Dev				Test								
Goal		Method		Requested		Goal		Method		Requested		
Model	Acc.	L2	Acc.	L2	Acc.	L2	Acc.	L2	Acc.	L2	Acc.	L2
LecTrack [9]	0.63	0.74	0.90	0.19	0.96	0.08	0.62	0.75	0.92	0.15	0.96	0.07
$iDST_ASR(r = 1.0)$	0.64	0.53	0.90	0.17	0.96	0.07	0.63	0.56	0.92	0.13	0.97	0.06
$iDST_{-}TRA(r = 1.0)$	0.87	0.23	0.94	0.10	0.99	0.02	0.82	0.30	0.94	0.09	0.99	0.02
$iDST_ASR(r = 0.6)$	0.57	0.61	0.89	0.18	0.86	0.23	0.56	0.62	0.91	0.14	0.86	0.21
$iTTD_ASR(d = 0.85)$	0.59	0.60	0.88	0.19	0.91	0.16	0.58	0.61	0.91	0.15	0.91	0.15
$iDST_{-}TRA(r = 0.6)$	0.77	0.34	0.93	0.11	0.88	0.18	0.73	0.39	0.94	0.10	0.88	0.18
$iTTD_{-}TRA(d = 0.85)$	0.80	0.31	0.92	0.12	0.91	0.15	0.76	0.37	0.93	0.11	0.91	0.15

- DST accuracy itself was improved by the incremental process
 - 80-97% for each slots, if we use transcription
- r=0.6: the system interrupt at 60% utterance
- d=0.85: the system interrupt if iTTD conf. is bigger than 0.85
- Comparable scores to waiting any words by users

Analysis

Adaptive turn taking can manage both NLU accuracy and interrupting

On-going project: Language understanding based on events

- Ontology-based NLU space requires handcrafting to define
 - Each domain requires own ontology
 - Generation also requires handcrafting
- Idea: using event (P-A) as understanding space
 - Will work for any domain that parsers can work
 - Coverage is limited
 - Difference between "go to see" and "visit to see"

Frame (slot-value)

Act: Request

Type: Chinese restaurant

Price_range: don't care

Count: 2

Kids_allowed: NULL

Event (predicate-argument)

New dialogue domain: argumentation

Argumentation

"he drove a car" and "alcohol was detected from his breath"; thus "he did drunk driving"

Claim:

he did drunk driving

Supportive facts:

- he drove a car
- alcohol was detected from his breath

Information seeking for argumentation

Collecting supportive facts through a dialogue

- A lot of possible questions
 - Policy is trained to decide
 "which action will the system ask on which situation"

DeepDIAL-WS

Information seeking based on Markov decision process

Information seeking based on Markov decision process

Information seeking based on Markov decision process

Strategy optimized by deep reinforcement learning

Dialogue turns

Dialogue example

Dialogue on twenty angry men dataset

- System tries to construct a rational argument to claim "the boy is not guilty"
- System can collect facts from the dialogue partner

Step	Speaker	Utterance	Rationality
1	Sys	Did not the woman across the street see the murder committed?	
	Ans	The woman across the street did not see the murder committed.	0.1
2	Sys	Did not the old man hear the kid yell, "I'm gonna kill you"?	
	Ans	The old man did not hear the kid yell, "I'm gonna kill you".	0.4
3	Sys	Is the old man a liar?	
	Ans	I do not know.	0.4
4	Sys	Did not the boy crouch down and stab a taller man in the chest?	
	Ans	I do not know.	0.4
5	Sys	Did not the woman across the street see the boy stab his father?	
	Ans	I do not know.	0.4
6	Sys	Did not the boy admit buying the knife?	
	Ans	The boy did not admit buying the knife.	0.7

Language generation for dialogue systems

 Contents to be contained in the generation results are decided by dialogue manager

- There are some works to generate sentences given an action
 - Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. Wen et al., In Proc. EMNLP, 2015.
 - Dusek et al., A context-aware natural language generator for dialogue systems. In Proc. SIGDIAL 2016.

SC-LSTM by Wen et al., 2015

Sample generations by SC-LSTM

(a) An example realisation from SF restaurant domain

(b) An example realisation from SF hotel domain

Context-aware NLG

- Sequence-to-sequence modeling of generation
 - Change the response according to the dialogue context

inform(line=M102, direction=Herald Square, vehicle=bus, departure_time=9:01am, from_stop=Wall Street)

Take bus line M102 from Wall Street
to Herald Square at 9:01am.

There is a bus at 9:01am from Wall Street
to Herald Square using line M102.
contextually bound response

What the problem?

- Existing generation systems are trained by softmax-cross entropy-loss to words
 - No guarantee to contain given information by system action

Input

Candidates: 2

Area: Düsseldorf

Pets: allow

Generation

There are 2 hotels that allow pets?

Training data

There are 2 hotels in Düsseldorf that allows pets

Controlling generation results with condition

- We built a generation system based on
 - generative adversarial network (Seq-GAN) and
 - label-aware objective
- We only controlled by dialogue acts of the system
 - The system itself is NCM

Generation based on SeqGAN

 Sequential generative adversarial network is a technique to evaluate whole of sentence (not word-by-word)

- Discriminator predicts two classes (real/fake)
- Generated receives reward to the generation sequence
 - Reinforcement learning is used (n-step delayed reward)

Cross-entropy loss and SeqGAN

 Generation model based on softmax-cross entropy calculates loss for each word

SeqGAN only calculate feedback at the end of sequence

Label aware objective

SeqGAN only distinguish real or fake

 We extended the discriminator to multi-class classification to know the generation result is based on input or not

Naturalness and controllability (human)

Naturalness	Natural	Not natural
NCM-w/condition	0.49	0.51
Adversarial-Implicit	0.57	0.43
Adversarial-Explicit	0.58	0.42

Controllability	Acc.	F-1
NCM-w/condition	0.743	0.759
Adversarial-Implicit	0.706	0.681
Adversarial-Explicit	0.797	0.787

Both naturalness and controllability were improved

- Explicit penalty to the condition improved the controllability
- Adversarial learning improved naturalness

Summary

- We introduced basic architecture of spoken dialogue systems, and tackled several problems of existing systems
 - Turn-taking is not natural
 - Need to define ontology
 - Dialogue strategy in a new space
 - Controllable neural language generation