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Hey. | need a Where would you
restaurant near helloftype=restaurant) ' h d like the

] inform(type=restaurant, location=centre) 5
the city centre. type location restaurant:

Do you want a
restaurant?

inform(location=city)
inform(location=centre)

The City Centre!

type location
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Hey. | need a
restaurant near
the city centre.

Where would you
like the
restaurant?

hello(type=restaurant)

inform(type=restaurant, location=centre)

type location

To confirm you

[ ion=ci t a restaurant
. ' inform(location=city) . wan
The Clty Centre! inform(location=centre) . near the City

type location centre?
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- Dialogue Belief Tracking ol
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" Belief State — Internal Distribution over states
= State - Information the agents needs to make decisions
" Capture user intentions

= Capture history of dialogue

" Aim: Predict Belief State
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- Datasets Al T
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" Two main comparative sets:
" WOz 20
" MultiwOZ 2.1 (Most Challenging)

" Metrics

® Slot accuracy — Proportion of domain-slot-value triplets
correctly identified.

" Joint-goal accuracy — Proportion of turn where all user
goals correctly identified.
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B /07 2.0

" Single Domain — Restaurants
®= 1200 Dialogues

Slot Accuracy

Joint-goal Accuracy

NBT - 84.8%
MDBT 96.4% 85.5%
GLAD 97.1% 88.1%

StateNET - 88.9%

GCE 97.4% 88.5%

GLAD + RC + FS 97.4% 89.2%
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B .1t W0z 2.0 e

® Multiple Domain — 7 domains
® 10000+ Dialogues

" Richer & Noisier Dialogues

Slot Accuracy Joint-goal Accuracy
MDBT 89.53% 15.57%
GCE 98.42% 36.57% -
Neural Reading 41.10%
HYST 44.24%
SUMBT 96.44% 46.65%
TRADE 96.42% v 48.62%
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B .t wO7 2.1 e

®" Corrections:
" Delayed annotation
" |ncorrect annotation

" Missed annotations

" Spelling errors in annotations

Model 2.0 2.1
Neural Reading 41.10% 36.40%

HYST 44.24% 38.10%

TRADE 48.62% 45.60%
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- Generative vs Discriminative e
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Generative

System
Action

Current
State

P(sys, usr, slu|state)

The future observations are generated by the current state.
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- Generative vs Discriminative e
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Discriminative

System
Action

P(state|features)

Discriminate between the possible states using features of the
dialogue.
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- Generative vs Discriminative e

" Generative models:

" Assumes turns are independent given the state.
" Discriminative models:

" No assumptions about the independence.

" Outperforms Generative models.
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- Models without a independent SLU e
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" Independent SLU Problems:
" Accumulation of errors

" Requires additional annotated training data.

System
Action

Features

User
Action P(state|features)

Combining the SLU and Feature extractors into one.
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- Single Unit SLU and DST el T
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" Delexicalisation for single SLU and Belief Tracker model.

" Requires large dictionaries of semantic lexicons.

" Word Embeddings and Feature Extractors
® Convolutional Neural Networks
" Recurrent cell NN
" More scalable

" Equivalent or better performance
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- Fully Statistical Trackers ol T
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= Statistical Dialogue Trackers:
" Recurrent Cell
" More adaptable

" Superior performance

17



- Statistical Discriminative Belief Tracking e a
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Turn Utterances

Utterance encoder / Feature extractor

Statistical Update
Model

IP)1:15(5 |f)
.



- Multi-Domain Belief Tracker e T
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Overview:

Feature Extractor

State Prediction Model

Statistical Update Model
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- Multi-Domain Belief Tracker Al T
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Utterance Encoder

" Semantic similarity to identifies the presence of a state in a
utterance.

" Slot-Value Features:
" User confirm (System slot-value + User affirm)

System: So you want a restaurant near the centre of

town? .
Restaurant-location-centre

User: Yes V
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- Multi-Domain Belief Tracker e T
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Utterance Encoder

" User request (System slot + User value)

System: Where would you like the hotel to be? o
Y Y Hotel-location-?7?

Rhine

User: Near the Rhine river.

" User inform (User slot-value)

User: | need a taxi to the airport at 10.

Taxi-destination-airport
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- Multi-Domain Belief Tracker e s

Utterance Encoder

.........

________

Extractor Extractor

Linear Linear Linear

O=0O=0

v// 7/ Input
—7— Encoders

fa
Domain Slot-Value
Encoder Encoder
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- Multi-Domain Belief Tracker e T
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Statistical Prediction Model

confirm request inform
fs—v fs—v fg_v

fd Linear Linear

p:(d) #
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- Multi-Domain Belief Tracker Al T
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Statistical Prediction Model

® Two independent models. Share knowledge across domains.
" Shares parameters across all ontology terms -> Scalable

" Multi-class classification - individual binary classification

= Allows adaption to new domains
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- Multi-Domain Belief Tracker e T
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Statistical Update Model

Split by slots

Model parameters

p:(v) p:(v) p:(v) .

RNN with RNN with RNN with
Memory cell Memory cell Memory cell

pl:t(”)*t(v)/pl:t(v)
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- Multi-Domain Belief Tracker Al T
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Statistical Update Model

p:(d) P1::(s, V)

RNN with
Memory cell

® Independence

l

]P)1:t(d; S, v)
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- Multi-Domain Belief Tracker e T
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Overview

Dataset Slot Accuracy Joint-goal Accuracy
WOZ 2.0 96.4% 85.5%
MultiwOZ 2.0 89.53% 15.57%

® Shortcomings Adapting

® Assumes Known Ontology — Scalability Issues
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- Improved Feature Extraction e
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" Slot conditioned
" Global parameter sharing

= Self-Attention contextual embeddings
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- Globally-Conditioned Encoder (GCE) e
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Overview:

Slot Conditioned Feature Extraction

Global Encoder

State Prediction
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- Globally-Conditioned Encoder (GCE) At T

Utterance Encoder

" Bidirectional LSTM model -> Contextual token embeddings

" Convolutional self-attention -> Contextual utterance

embedding.

" Embeddings:
" Current User Utterance
" Previous ) System acts

" Value candidates

30



- Globally-Conditioned Encoder (GCE) e
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Utterance Encoder — Slot Conditioned token embeddings

Utterance Slot
QW w
® D @D
C{ Cy .. Cp
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- Globally-Conditioned Encoder (GCE) e
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Utterance Encoder — Bi-directional LSTM with Self-Attention

—
C1 Cy .. Cp Utterance features Slot
h]_ hz hn Sk

e
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- Globally-Conditioned Encoder (GCE) At T
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The Globally-Conditioned Encoder (GCE)

Utterance

Slot Conditioned

Token Encoder .
Global Attention

Model

Slot
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- Globally-Conditioned Encoder (GCE) e
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The Globally-Conditioned Encoder (GCE)

Slot

User Utterance \
System Actions
Slot Values \m

Features
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- Globally-Conditioned Encoder (GCE) At T
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Statistical Prediction Model

= Utterance scoring model
= User token embeddings + value embeddings

" Degree to which the slot-value pair was mentioned by
the user.

User: | want a Italian restaurant.
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- Globally-Conditioned Encoder (GCE) At T

Statistical Prediction Model

= Action scoring model
= System utterance embeddings + User utterance + value

" Degree to which the slot-value was mentioned by the
system.

System: Would you like the restaurant to be in the east of town?

Location not east
User: No.
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Globally-Conditioned Encoder (GCE) e o
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Statistical Prediction Model

Ip)l:t(sr v)
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- Globally-Conditioned Encoder (GCE) e

Overview

Dataset Slot Accuracy Joint-goal Accuracy
WOZ 2.0 97.38% 88.51%
MultiwOZ 2.0 98.42% 36.57%

" Limitations:
" Past ) system utterances used.

" Assumes Known Ontology — Scalability Issues
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- Dynamic Ontology e
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" Value generation models
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- Transferable Dialogue State Generator (TRADE) W%/
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Overview:

History based Feature Extractor

Domain — slot Conditioned encoder

State Prediction
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- Transferable Dialogue State Generator (TRADE) W%/
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Utterance Encoder
" Bidirectional GRU model -> Contextual token embeddings

" Domain-slot conditioned GRU -> Contextual history
embedding.

" Encodes past [ turns jointly.
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- Transferable Dialogue State Generator (TRADE) W%/
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Utterance Encoder

User Utterance  System Utterance User Utterance  System Utterance User Utterance  System Utterance
t—1 t—1 t—1 t—1 t t

==

@

t, t, .. t,
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- Transferable Dialogue State Generator (TRADE)

Utterance Encoder

Domain Slot
d' Sk
N
2
fix

t, ty .. t,

GRU GRU GRU GRU

h, h, Ry —
S5
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- Transferable Dialogue State Generator (TRADE) W%/
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Statistical Prediction Model — The TRADEMARK!

dec
hjk

© ; .
\/ﬂ\l — ]p)]gken Probability of

final Significance
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- Transferable Dialogue State Generator (TRADE) e T
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Overview
Slot Accuracy Joint-goal Accuracy
GCE 98.42% 36.57%
TRADE 96.42% 48.62%
" Positives:

" Generates values with great success.

" Shows promise with few-shot learning.
" Limitation:

= Zero-shot performance not great.

" Past L turns used. (Inefficient)

= Requires domain-slots to be defined
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- Improved latent space mappings e
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" Transformer based contextual mappings

" Truly statistical latent space belief tracker
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"

Overview:

Contextual embeddings for utterances and

ontology terms

Multi-Head attention and RNN based latent
belief tracker

Statistical Prediction Model
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Utterance Encoder

" Two fine-tuned BERT models:
" Utterance embedding
® Domain-slot-value embedding

= Use of contextual embeddings
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Utterance Encoder

[CLS] [User Utterance| [SEP] [CLS] [Domain-Slot] [SEP] [CLS] [Value] [SEP]
[System Utterance| [SEP]

hicLs hicLs

dsiot Yt
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Multi-head Attention

" Input:
" Query — What is the encoder asking?
" Key — The state of the encoder. Key unlocks the answer.
® Value — How much attention should we give?

" Passed through multiple attention heads.

= Returns context embedding.
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Statistical Update Model

" Query = System utterance

" Key = User utterance

" Value = Domain-slot

" The attention heads provides the context of the dialogue.
" RNN tracks context over dialogue.

" Provides a estimated contextual value embedding.
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Statistical Update Model

Ht dsiot

Multi-head
Attention

Ve Estimated value embedding

=5 www.hhu.de



- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Statistical Prediction Model

de di i

Y%

]p)l:t(d; S, U)
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- Slot-Utterance Matching for Universal BT(SUMBT)  —=~="7"
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Overview
Slot Accuracy Joint-goal Accuracy
TRADE 96.42% 48.62%
SUBMT 96.44% 46.65%
" Positives:

" True latent space fully statistical belief tracker.
" Limitation:
" Very large model. Expensive to train.

" Requires ontology to be defined.
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Slot-Utterance Matching for Universal BT(SUMBT) ===
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Overview

Dialog Example

Turn1, U: Hello, I'm looking for a restaurant, either
Mediterranean or Indian, it must be reasonably
priced though.

Turn 2, S:Sorry, we don’t have any matching restaurants.

(PAD) ~

(PAD)

[PAD]

U: How about Indian?

Turn 3, S: We have plenty of Indian restaurants. Is there teer) ol

(PAD) |

a particular place you'd like to stay in?

[PAD]

(PAD] ~
(PAD]
(PAD)
(PAD)

U: I have no preference for the location, tea0)

- (PAD] ~
| just need an address and phone number.

[PAD]

(PAD]
(PAD]

(PAD) -
(PAD)

[(PAD]

[PAD] [(PAD]
[PAD] [(PAD]
[PAD] [PAD] -
(PAD] (PAD]
[PAD] [PAD]
[PAD] - [PAD) -

(PAD) (PAD)

(PAD] (PAD)

[PAD) (PAD)

(PAD) (PAD)

area price range are price range area price range
(none)  (moderate) (none) (moderate) (don’t care) (moderate)
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- Success stories Al T
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" Word embeddings

" Improved performance

" Better Scalability

" Successes of contextual embeddings
" Recurrent models

" Fully statistical

" Learns cross-turn dependencies

" No rules needed
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- Success stories Al T
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" Semantic similarity

" Leveraged from word embeddings

" Does the user/system mention a concept?
" Projecting dialogue history onto latent representation.
" Knowledge sharing

" Parameter sharing

" Domains share slots, Slots share values

" Improved performance

" Adaptability

" Scalability
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- Success stories Al T
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" Value generation methods

" More scalable

" Improved performance

" Adaptability

" Ontology only needs domains and slots
" Joint Belief Tracking and Policy Learning

" Promises to improve performance
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- Shortcomings e
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" Predefined ontology
" Not scalable

" Not possible - new values can constantly be added
(Restaurant names)

= Zero-shot adaption
" Very little success
" Rare slot-value combinations
" Difficulty accurately predicting these
" Negatively impacts joint goal accuracy

" Limits adaptability
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- Shortcomings e
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= Utilising non-dialogue data

= Utilising non dialogue data through word embeddings.
" Representation of states

" How to represent states

" |s domain-slot-value sufficient

® Could graph structures states be embedded

" Efficient use of data for rare states

" Joint goal on rich and noisy datasets
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Resources Al T
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" HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking
R Goel, S Paul and D Hakkani-Tur, 2019

®  Neural Belief Tracker: Data-Driven Dialogue State Tracking
N Mrksi¢, D Séaghdha, T Wen, B Thomson and S Young 2016

" The Dialog State Tracking Challenge: A Review
JD Williams, A Raux, D Ramachandran, and A Black 2013

" SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking
H Lee, ) Lee and T Kim 2019

" Dialog State Tracking: A Neural Reading Comprehension Approach
S Gao, A Sethi, S Aggarwal, T Chung and D Hakkani-Ttir 2019

" Improving Dialogue State Tracking by Discerning the Relevant Context
S Sharma, PK Choubey and R Huang 2019

" Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing
O Ramadan, P Budzianowski and M Gasi¢ 2018
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http://arxiv.org/abs/1907.00883
http://arxiv.org/abs/1606.03777
http://dad.uni-bielefeld.de/index.php/dad/article/viewFile/3685/3580
http://arxiv.org/abs/1907.07421
http://arxiv.org/abs/1908.01946
http://arxiv.org/abs/1904.02800
http://arxiv.org/abs/1807.06517

Resources Al T
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" Toward Scalable Neural Dialogue State Tracking Model
E Nouri and E Hosseini-Asl 2018

" Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems
A Madotto, E Hosseini-Asl and C Xiong 2018

" Towards Universal Dialogue State Tracking

L Ren, K Xie, L Chen and K Yu 2019
®  BERT-DST : Scalable End-to-End Dialogue State Tracking with Bidirectional Encoder
Representations from Transformer

G Chao and | Lane 2019

" Global-Locally Self-Attentive for Dialogue State Tracking
V Zhong, C Xiong and R Socher 2019

" Fully Statistical Neural Belief Tracking
N Mrksi¢ Nikola and | Vuli¢ 2018

" Word-Based Dialog State Tracking with Recurrent Neural Networks
M Henderson, B Thomson and S Young 2015
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http://arxiv.org/abs/1812.00899
https://arxiv.org/abs/1905.08743
https://arxiv.org/abs/1810.09587
https://arxiv.org/abs/1907.03040
https://arxiv.org/abs/1805.09655
http://arxiv.org/abs/1805.11350
https://www.aclweb.org/anthology/W14-4340

