
Statistical Dialogue

Modelling

Milica Gašić
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Abstract

The partially observable Markov decision process (POMDP) has

been proposed as a model for dialogue which is able to pro-

vide increased robustness to errors in understanding of speech,

automatically optimise dialogue management behaviour and be

amenable to adaptation for different user types. The POMDP-

based approach to dialogue management maintains a distribu-

tion over every possible dialogue state, the belief state. Based

on that distribution the system chooses the action that gives the

highest expected reward, where the reward provides a measure of

how good the dialogue is. The primary challenge, however, with

the POMDP-based approach is the intractability of both main-

taining the belief state and of optimising action selection. The

Hidden Information State framework is a practical framework

for building dialogue managers based on the POMDP approach.

It achieves tractability by grouping the possible user goals into

equivalence classes which then ensures that the belief state can

be maintained tractably. It optimises the dialogue policy in a

much reduced belief state space, the summary space.

In this thesis, a more efficient state representation is presented

which includes the representation of logical complements of con-

cepts in the user request. On the one hand, the representation

supports more complex dialogues that include logical expres-

sions. On the other hand, it enables a pruning technique to

be implemented which is able to place a bound on the space.

Thus, no limit is required on the length of the dialogue or on the

number of different hypotheses that are received from the speech

understanding module. More importantly, this enables building

real-world dialogue systems with large domains.

This thesis also examines the potential for improving the action



selection. Firstly, the problem of optimising action selection in

the summary space is examined. A method is then proposed

that guarantees selection of optimal back-off actions in the case

when the selected action cannot be mapped back to the original

belief state space. Secondly, this thesis investigates the use of

Gaussian processes to approximate the highest expected reward

that can be obtained for every belief state and system action.

Approximating the function with a Gaussian process provides

a posterior distribution of the function values given the prior

distribution and some observations. It is shown here that an

adequate prior speeds up the optimisation of action selection.

The posterior also provides an estimate of the uncertainty, which

enables rapid adaptation to different user profiles.

Overall, the methods proposed in this thesis make steps towards

more flexible real-world spoken dialogue systems.
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Notation

General:

P (·) probability
P (·|·) conditional probability
E(·) expectation
R the set of real numbers
N the set of natural numbers
Markov decision process:

at the action at time step t (random variable)
A a set of actions
a an element of A
st the state at time step t (random variable)
S a set of states
s, s′ elements of S
rt the immediate reward at time step t (random variable)
r an element of R
Pa
ss′ the transition probability, P (st+1 = s′|st = s, at = a)

Ra
s the expected immediate reward, E(rt+1|st = s, at = a)

π a policy, π : S→ A

γ the geometric discount factor
Rπ

t the discounted return for policy π at time step t (random
variable)

V π(s) the Value function for policy π, V π : S→ R

V (s) the optimal Value function
Qπ(s, a) the Q-function for policy π, Qπ : S×A→ R

Q(s, a) the optimal Q-function
N(s, a) number of times action a is taken in state s, N : S×A→ N

ǫ the exploration factor
λ the step size parameter
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Partially observable Markov decision process:

ot the observation at time step t (random variable)
O a set of observations
o, o′ elements of O
Pso the observation probability, P (ot = o|st = s)
b(st) belief state at time step t
b(st = s) probability of being in state s ∈ S at time step t

B the belief space, [0, 1]|S|

b an element of B
V (b) the optimal Value function, V : B→ R

Q(b, a) the optimal Q-function, Q : B×A→ R

V π(b) the Value function for policy π
Πt the set of all policy trees at step t
Vt the set of the Value functions for policy trees Πt

V+
t a pruned set of the Value functions

ν threshold
POMDP-based dialogue modelling:

amt the system’s action at dialogue turn t (random variable)
Am the set of all system’s actions
am an element of Am

aut the user action at dialogue turn t (random variable)
Au the set of all user actions actions
au, a

′
u elements of Au

sut the user goal at dialogue turn t (random variable)
Su the set of user goals
su, s

′
u elements of Su

sdt the dialogue history at dialogue turn t (random variable)
Sd the set of all dialogue histories
sd, s

′
d elements of Sd
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Hidden Information State dialogue modelling:

pt the partition at dialogue turn t (random variable)
Pt the set of partitions at turn t
p an element of Pt

p′ an element of Pt+1

η a node in partition
ht the hypothesis at dialogue turn t (random variable)
Ht the set of hypothesis at turn t
h an element of Ht

h′ an element of Ht+1

ãiu ith element in the N-best list of the user input
ci a confidence score associated with ith element in

the N-best list
M(a′u, p

′, am) item matching function M : Au × Pt+1 ×Am → R

ρ a grounding state
Γ the set of grounding states
τ(ρ, am, a′u) grounding state transition function,

τ : Γ×Am ×Au → Γ

b̂ a summary point
âm a summary action
Extended HIS state representation:

α = β an attribute-value pair corresponding to nodes α
and β

χ the pruning threshold (the maximum number of
partitions)

Gaussian process reinforcement learning:

x a multidimensional continuous data point
N(·, ·) a Gaussian distribution
GP (m(x), k(x,x)) a Gaussian process with mean m(x) and kernel

function k(x,x)
k(x,x; Θ) a kernel function with parameters Θ
kX(x,x) a kernel function where x ∈ X

f(x) the latent function

f(x) the mean of latent function f(x)
cov(x,x) the covariance function
ξ the Gaussian noise, ξ ∼ N(0, σ2)
y a noisy function observation
Xt a vector of data points (states) up-to time step t
yt a vector of observations up-to time step t
Kt the Gram matrix for data points Xt

Kt(Θ) a Gram matrix where the kernel function is
parametrised with Θ

kt(x) a vector of the kernel function values between x and
data points Xt
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φi(·) a kernel feature function where i ∈ {1, 2, . . . }
φ(·) the kernel feature vector
Bt a vector of belief state-action pairs up-to time step t
rt a vector of observed rewards in data points Bt

qt a vector of the Q-function values in data points Bt

∆Qπ(b, a) residual of the Q-function, ∆Qπ(b, a) ∼ N(0, σ2)
∆qt a vector of the residual values in data points Bt

(b̃, ã) a representative belief state-action pair
D the set of representative points – the dictionary
gt a vector of coefficients
δa(a

′) the Kronecker δ-function δa(a
′) = 1 for a′ = a, 0 otherwise

Adaptation:

M a model
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Chapter 1

Introduction

1.1 Overview

The Oxford dictionary defines a dialogue as “a conversation between two or

more people”. According to the same dictionary, a computer is “an elec-

tronic device which is capable of receiving information (data) in a particular

form” and able “to produce a result in the form of information or signals”.

But is dialogue really restricted to humans, as suggested by the Oxford

dictionary, or can it instead be viewed as an exchange of information in a

human-like manner, for example via speech? Will computers one day be

able to take part in a dialogue? This thesis develops techniques for building

such a computer, with the aim that one day humans will be able to speak

to them as they do among themselves.

A system that can maintain an intelligent conversation with a human,

via speech, and in real time, is called a spoken dialogue system. In this

thesis, the scope of the conversation will always be limited, and is called

the dialogue domain. A special emphasis is placed on real-world spoken

dialogue systems, which are systems where the domain is large enough to

enable conversation with some practical use. There are many challenges

that arise when scaling these systems to large domains, and this thesis aims

to address these.

Real-world spoken dialogue systems have innumerable benefits. Using

speech a computer interface facilitates swift, human-like acquisition of infor-

mation. Desktop computers have already been replaced by more compact,

easily portable laptops, which are in turn rapidly being made obsolete by

1



1. Introduction

significantly smaller and increasingly powerful smart phones. The ability

to acquire information almost instantaneously, at any time, anywhere, in

increasingly simplified ways has become paramount. By replacing the need

for typing, a spoken dialogue system makes it possible for a user to obtain

information while using their hands to perform some other task, which in

many cases will be the user’s primary task. An example of using dialogue

systems for secondary tasks is the development of in-car spoken dialogue

systems [5]. This domain is particularly challenging since it involves dealing

with varying levels of noise and the robustness of such systems is crucial.

Another challenge is to alleviate the cognitive load on the user since the

user’s ability to perform the primary task cannot be compromised.

The ability to sustain an intelligent conversation with a machine is hugely

beneficial to time-consuming business transactions and aspects of everyday

life – particularly those that currently rely on a human to provide informa-

tion or require filling in forms on the web. Spoken dialogue technology is not

only applicable to business and everyday use in developed countries, but is

even more relevant for small businesses and communities in the developing

world. Recent research [6] has found that in many rural areas of developing

countries, more people regularly use mobile phones than can read or write.

Access to automated systems facilitates the provision of useful information

such as weather and agriculture reports, and can even serve as a portal for

advertising local businesses. The benefits of such technology are already

visible [6, 7].

For some time there has been significant interest in developing an open

domain dialogue system that is able to handle arbitrary conversations. Ide-

ally, such a system would understand and respond in the same way as a

human might do, but has encyclopaedic knowledge. However, building such

a system has proved challenging. There only currently exist text-based dia-

logue systems, so-called chat-bots, that produce seemingly natural sentences

but fail to sustain an intelligent conversation1.

While an open-domain dialogue system would be ideal, the majority of

applications in fact involve dialogue with a limited domain. Examples in-

clude telephone banking, flight-booking, trouble-shooting and information-

1In the 2008 Loebner Prize competition, only three out of twelve judges mistook the
winning chat-bot for a human. This was the best performance since the start of the
competition in 1991, http://www.loebner.net/Prizef/loebner-prize.html.
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providing systems [8, 9, 10]. The usability and reliability of such systems

is crucial. Such systems have to be robust and be able to deal with a large

number of different users, while remaining relatively easy to develop and

extend [11].

Although human-computer dialogue has indeed been a topic of research

for some time, the poor performance of the underlying speech recognition

systems has hampered progress in the area. While the performance of speech

recognition systems has steadily improved over recent decades and the per-

formance in noise has dramatically improved, it is nowhere near human

speech recognition performance [12]. This poses a significant challenge to

deploying real-world spoken dialogue systems [9]. Even if accurate input

is assumed, it is not trivial to determine optimal system behaviour [13].

There is therefore a need for a spoken dialogue systems framework that is

able gracefully to deal with the imperfections of the speech recogniser, while

simultaneously being able to sustain natural conversation [11].

Despite being marked as one of the main challenges for artificial intelli-

gence six decades ago [14], human-computer dialogue systems have only in

the last decade been able to benefit from data-driven techniques and ma-

chine learning algorithms. This has proved to be promising for improving

robustness and extendibility of spoken dialogue technology [15].

The remainder of this section provides an overview of a typical spoken

dialogue system’s structure. Emphasis is placed on modularity and statisti-

cal approaches to building such a system, focusing on the dialogue manager

in particular. Section 1.2 describes the motivation for the work presented

in this thesis, with the main contributions outlined in Section 1.3. Finally,

the structure of the remainder of the thesis is given in Section 1.4.

1.1.1 Spoken dialogue system structure

A spoken dialogue system enables human-computer interaction where the

primary medium of both input and output is speech. In this thesis, dialogue

is represented a sequence of dialogue turns in which each turn consists of a

system utterance followed by a user utterance1. A spoken dialogue system

1There are, however, more complex ways of representing dialogue. In [16] a multi-party
spoken dialogue system is built that supports both visual and speech inputs. Additionally,
research in [17] investigated dialogue in which the turn is not restricted to one system and
one user utterance but there is more flexibility in communication.

3



1. Introduction

Figure 1.1: Spoken dialogue system structure.

normally consists of five components, as shown in Fig. 1.1. The first compo-

nent is the speech recogniser, which transforms the user’s speech into text.

The text is then forwarded to the next component, the semantic decoder.

The semantic decoder extracts a semantic representation of the user’s inten-

tion, represented by semantic units called concepts. This is then forwarded

to the dialogue management component, which selects the most appropriate

system output, again in the form of semantic units. The system output is

then passed to the next component – the natural language generator, which

transforms the abstract semantic notation back into a text representation.

The last component, the speech synthesiser, then converts this text into

speech. See [18, 19] for a more detailed description.

In a statistical spoken dialogue system, the aim is to replace each of the

afore-mentioned components with a statistical model that can be trained

from data [20]. The overall goal is to build a data-driven dialogue system

which improves over time and which users see as behaving in human-like way.

That the components of such a system are based on probability distributions

allows them to model the stochasticity that occurs in a dialogue. This

approach allows the power of probability theory to be used in optimising

the individual components of the system.

The system can also make use of probability theory to model the out-

puts of each component of the system as suggested in [21, 22, 23]. The

outputs for each component are represented as a probability distribution

over all the possible outputs that would have occurred in a non-statistical

model. This has the potential to provide a more robust model of dialogue,

since the information passed between components includes more informa-

tion about the uncertainty in the interpretation of the user’s input. Ideally,

4
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1.1 Overview

the automatic speech recognition (ASR) module produces a full probabil-

ity distribution over every possible hypotheses of what the user said. The

probability distribution is then forwarded to the semantic decoder, which

produces a probability distribution over all possible semantic concepts. This

is finally propagated to the dialogue manager. In this way, the dialogue

manager is able to make use of the alternative options in the input to for-

mulate an answer for the user depending on the uncertainty conveyed in

the probability distribution. This approach is particularly useful in noisy

environments, when the most-likely input might not be correct. In practice,

the probability distributions are too complex to be represented in full and

so an approximation is used instead. The probability distributions are nor-

mally approximated by a lattice [24] or an N-best list [25] of hypothesised

outputs with associated confidence scores [26]. A confidence score gives an

estimate of how likely a hypothesised output is, given the input and it can

be provided at different levels of granularity. In terms of the ASR and se-

mantic decoding, utterance-level and concept-level confidence scores will be

assumed respectively.

1.1.2 Dialogue management

The central component of a spoken dialogue system is the dialogue manager.

It is responsible for selecting the system responses – actions – and governs

the flow of the dialogue. This thesis will assume that the dialogue manager

can be decoupled into two components – that which keeps track of the di-

alogue state, called the dialogue model, and that responsible for selecting

the system’s action based on the dialogue state, called the action selection

component. A mapping between dialogue states and system actions is called

a dialogue policy. As was already outlined in the previous section, learn-

ing from data is capable of making dialogue systems more human-like and

also reduces the development cost of hand-crafting every possible dialogue

scenario.

All components of a spoken dialogue system can in principle be esti-

mated using supervised learning techniques.1 Speech recognisers normally

use a type of statistical model called a hidden Markov model (HMM), which

is trained on annotated speech data [28]. In a similar way, the speech syn-

1Refer to [27] for an overview of statistical models.
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thesiser can also be based on HMMs [29]. Semantic decoding is often hand-

crafted, but it can also be seen as a classification task that can be imple-

mented with, for example, support vector machines [30]. Similarly, natural

language generation is normally hand-crafted, but can be modelled using

Bayesian networks trained from data [31]. Dialogue management could be

seen as a classification task in which an appropriate dialogue action is taken

for each dialogue state. Such a classifier can easily be trained from a corpus

of annotated data. In such an approach, the action that is taken by the

classifier in each dialogue state resembles the corresponding action seen in

the corpus for that particular state. However, the actions that are taken

should not merely imitate the actions seen in a given corpus, but should

ideally lead to a successful dialogue. For this reason, it is more appropriate

to view dialogue as a long term decision process, and consequently optimise

the actions it takes according to the overall success of the dialogue. This

is therefore a planning problem and one way of obtaining optimal solutions

automatically is via reinforcement learning [32].

In the reinforcement learning approach, the dialogue is modelled in terms

of the dialogue state, the system’s action and the reward, the measure of

dialogue success [33]. If the current dialogue state depends only on the

previous dialogue state, the dialogue can be modelled as a Markov decision

process (MDP) [32]. This makes it possible to determine the optimal policy –

that which yields the highest reward, using MDP learning algorithms. When

using a probability distribution over possible utterances, the equivalent

model is the partially observable Markov decision process (POMDP) [34].

Then, instead of maintaining the dialogue state in every dialogue turn, a dis-

tribution of possible dialogue states, the belief state, is maintained through-

out the dialogue. This makes it possible for the optimal actions that the

system takes to be based not only on the overall dialogue success, but also

on the differing levels of uncertainty in the dialogue. Formal definitions

of Markov decision processes and partially observable Markov decision pro-

cesses, and an overview of their use in statistical dialogue modelling will be

given in Section 2.2.
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1.2 Motivation

Modelling dialogue as a partially observable Markov decision process (POMDP)

can achieve robustness in the face of understanding errors as it models un-

certainty in the dialogue state via maintaining a belief state. However, a

significant challenge is the tractability of both the dialogue modelling com-

ponent and the action-selection component. The development of an approx-

imation framework that can retain the benefits of this model for a real-world

dialogue task, while at the same time remaining tractable both in the belief

state estimation and action-selection, is the core topic of this thesis.

Using statistical approaches to dialogue management provides a frame-

work where other important aspects of dialogue modelling can be explored.

This includes the topic of adaptation. More specifically, different users per-

ceive and value dialogue differently. It is therefore important to ensure that

a dialogue system can not only learn from data, but also be able to adapt

quickly to different user types.

1.3 Contribution

The work presented here has been carried out on a special form of statis-

tical dialogue system, called the Hidden Information State (HIS) dialogue

system [35], and was motivated by the limitations of the original design

which were identified in a user study. The contribution of this thesis may

be conveniently divided into two parts – the contribution to state repre-

sentation in a POMDP dialogue manager, and the contribution to policy

optimisation.

The first contribution concerns the representation of the dialogue state

in a way that supports complex dialogues. Although this work extends

previous work on the HIS framework, the techniques used are applicable

to any POMDP-based system which has a similar joint representation of

concepts in the dialogue state or in a part of the dialogue state.

The second contribution may further be subdivided into two parts. The

first concerns an investigation of the issues that arise in policy optimisation

in a reduced dialogue space, the summary space [36]. This is relevant because

POMDP dialogue managers typically reduce the dialogue state space to a

smaller scale space in order to perform the policy optimisations tractably.

7
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The second part investigates policy optimisation and uses a Bayesian ap-

proach to speed up the learning process and enable adaptation to different

user profiles. This part of the contribution is independent of the adopted

HIS framework.

More details on the primary findings of this thesis are as follows:

1.3.1 Effective handling of the dialogue state

The information that is included in the dialogue state is crucial for successful

dialogue system operation. As will be explained in detail in Section 2.2.5,

intractability is the main obstacle to a wider application of the POMDP-

based approach. In fact, the difficulty in updating the distribution over all

possible dialogue states normally places a constraint on the complexity of

the supported dialogue domain, the length of the N-best list of user inputs

as well as the length of the dialogue itself. In this thesis a more flexible

representation of dialogue state is presented which supports more complex

dialogues, while at the same time allowing a pruning mechanism to be im-

plemented such that neither the length of the N-best user input list nor the

length of the dialogue is constrained.

1.3.2 Policy optimisation in reduced dialogue state space

State of the art methods for policy optimisation in POMDP-based dialogue

management rely on reducing the dialogue state space and performing pol-

icy optimisation in the resulting reduced space, called the summary space.

While such methods enable tractability, various heuristics are required in

order to map a summary action into an appropriate dialogue action in the

original space. Not every summary action is applicable to every possible

belief state so back-off action-selection strategies are required. The effects

of back-off selection are investigated here and a strategy that is guaranteed

to perform optimally is presented. An important observation that is made

here is the reduced ability of standard non-parametric algorithms to deal

with the expansion of the summary space.
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1.3.3 Gaussian processes in POMDP-based dialogue man-

agement policy optimisation

Non-parametric policy optimisation solutions require many training itera-

tions to reach convergence even in a reduced dialogue state space. Para-

metric methods can speed up the learning process but necessitate a manual

choice of basis functions and provide the optimal solution only within the

given basis. This thesis investigates the use of Gaussian processes as a

non-parametric Bayesian approach for function approximation [37]. This

approach incorporates a prior probability which speeds up the policy opti-

misation process. The approach also provides a measure of the uncertainty

during policy optimisation, which is shown to be particularly useful for dia-

logue management, since it enables further acceleration of the learning pro-

cess in an active learning setting. In addition, the measure of uncertainty

can be used as a policy selection criterion for rapid adaptation to different

user profiles.

1.4 Thesis structure

The next chapter offers an introduction to spoken dialogue systems research,

with particular attention paid to statistical approaches. Chapter 3 provides

an overview of the Hidden Information State dialogue system, which is the

statistical dialogue system framework studied in this thesis. In Chapter 4,

an extension to the dialogue state representation is described, which enables

tractability in more complex dialogue domains. Chapter 5 discusses policy

learning and its challenges. In Chapter 6, Gaussian processes for dialogue

policy optimisation are introduced with particular emphasis on their ability

to represent uncertainty in policy learning, as well as their ability to ac-

celerate the learning process. Chapter 7 describes how Gaussian processes

in dialogue management can be used to support adaptability to different

user profiles. Finally, Chapter 8 presents conclusions and discusses possible

avenues of fruitful future research.
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Chapter 2

Background

2.1 Introduction

The theory of spoken dialogue systems covers a large research area with

many distinct topics [18]. In order to simplify the exposition, this chapter

will focus on providing an introduction to the main topics used in this thesis.

The chapter will thus focus on task-oriented, limited domain, statistical

dialogue systems that can be used for real-world applications.

The first section of the chapter discusses the complexity of the domain

required for a real-world spoken dialogue system. This is followed by a

discussion of various rule-based methods used for building these systems

in Section 2.1.2. Some deficiencies of these methods will be highlighted

and provide a motive for the statistical approaches to dialogue management

presented later. Section 2.2 gives a detailed description of how reinforcement

learning is used for dialogue management, both when dialogue is modelled

as a Markov decision process and a partially observable Markov decision

process. This description is accompanied by a review of spoken dialogue

systems that are based on these models. When using these models, it is

useful to have a simulator of the way users behave in a dialogue, called a

user simulator. Section 2.3 explains the importance of user simulation and

describes the basic theory of this topic. Section 2.4 concludes the chapter

with a discussion on evaluation methods.
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2.1.1 Domain size of a real-world dialogue manager

Before an overview of statistical approaches for dialogue management is

given, it is important to discuss what is meant here by a real-world task-

oriented dialogue system. As noted in the introduction, the key feature of a

real-world spoken dialogue system is that it should be useful in a practical

situation, for example in replacing a human operator in a call centre. The

system can be restricted to a specific task, for example providing information

about a restaurant [38], booking a flight [8], or giving instructions to a

user on how to fix a modem [10]. Such dialogue systems typically have

access to a database which contains all the information about the particular

domain [18]. The size of the domain can thus be defined in terms of the

size of the underlying database, which in turn can be described in terms of

the number of entities, attributes and values. A real-world system should

be able to handle at least 100 entities, around 10 attributes, and hundreds

of values. For the purposes of this thesis, any system which can do this will

considered to be a real-world system, although there are clearly many tasks

which require the system to scale further.

Good examples of real-world dialogue managers are the systems built

for the Spoken Dialogue Challenge [39]. The task for these systems was

to provide bus information in Pittsburgh – users should be able to call

the service and ask which buses go from one stop to another and at what

times [9]. The database consists of more than 300, 000 bus stops, along

with the bus routes and arrival times for each stop. In the Spoken Dialogue

Challenge several systems were built for this task with the aim of evaluating

them in interaction with large number of real users. More information about

the systems and the outcomes of the challenge can be found in [40].

2.1.2 Rule-based approaches to dialogue management

As outlined in Section 1.1.2, the role of the dialogue manager is to control

the flow of the dialogue. A simple way to achieve this is to define a set of

rules that the system follows during the course of the dialogue. In such a

framework, the dialogue manager typically tries to maintain control of the

dialogue by asking the user questions which the user then answers. Such an

approach is called a system-directed dialogue [18]. The dialogue model in

such systems is usually a finite state automaton (FSA) where each node of

12
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the FSA represents a dialogue state with the associated system questions and

the arcs denote possible user answers [41]. Current commercially deployed

dialogue managers are based on a similar structure – call-flow [42, 43]– which

makes use of high-level specification languages such as VoiceXML [44, 45]

to implement the functional specification and the detailed design of the

interaction. Researchers have noted several limitations to this approach [11].

Perhaps, the most important is that the system design depends heavily

on the domain. As a result, it is difficult to extend the system – every

extension to the database requires arcs and nodes to be added to the call-

flow manually. It also clearly has no capacity automatically to improve the

dialogue manager’s behaviour. Finally, these systems are sensitive to speech-

understanding errors and require hand-crafted error handling schemes to

deal with these errors, typically in the form of a dedicated error-handler.

An alternative approach to rule-based system design is known as frame-

filling or form-filling [46]. A distinctive feature of this approach is that

it decouples the rules dealing with user input from those controlling the

dialogue flow. The user goal is described in terms of slots, which represent

a concept that a user can talk about, and fillers, which represent a piece

of information that can be obtained from the user input for that particular

concept. Over the dialogue, a collection of slots, called a form or frame, will

be filled with the values provided by the user. Note that if these slots and

fillers correspond to the attributes and values of the underlying database,

the complexity of these systems can be expressed in terms of the number of

slots and the number of fillers they support.

The rule-based element of this approach arises when defining the dia-

logue flow. It is represented as an FSA, where the transitions govern which

actions to take given how populated the current form is. This approach

allows the user to specify their request and not necessarily directly follow

the system’s questions. This is example of an approach that supports user

initiative during the dialogue [18]. The form-filling approach was further

extended in the agenda-based dialogue management framework to support

more complex dialogues. In the agenda-based approach, the dialogue con-

sists of sub-dialogues and each sub-dialogue has an agenda that directs its

flow [47]. While this approach is more flexible, it does not support auto-

matic optimisation of the dialogue manager and does not replace the need

for a separate error handler that deals with speech understanding errors.

13
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The role of an error handler is to detect speech-understanding errors and

to provide a strategy to deal with them [48]. One way of detecting errors is

to check whether the inputs are reasonable given the state of the system and

system action. However, this approach can easily fail because the system

state is built assuming the past inputs were correct. One simple way to deal

with this is to have a very conservative dialogue manager behaviour which

confirms almost every user input, thus preventing an error from occurring.

Such policies are typically very unnatural and annoying to the user [11].

Another way of detecting errors is to use the confidence measure as-

signed to each input by the speech-understanding unit. If the confidence is

above a certain threshold, the input is accepted, and otherwise it is removed.

This does provide a more refined correction strategy but its effectiveness de-

pends vitally on the confidence measure being reliable, which is often not

the case [43]. Even when it is reliable, this approach will fail when the same

mis-recognitions reoccur in a dialogue [49]. Repeatedly rejecting the input

leads to an infinite loop, since the system keeps asking the same question

and the user gives the same answer.

2.1.3 Statistical approaches to dialogue management

When building a commercially deployed system one usually starts with a

functional specification of the desired dialogue management behaviour and

builds the system to match it. Once the basic behaviour is implemented,

the system is tested with users and then manually adjusted to improve user

satisfaction. The process is repeated iteratively until a suitable level of user

satisfaction is reached [50].

In principle, supervised learning techniques offer a way of learning the op-

timal dialogue management behaviour directly from data when given a large

enough dialogue corpus. This allows the dialogue manager to be portable

across different domains and to be easily extendible. However, the dynamic

nature of dialogue results in large difficulties when applying data-driven

techniques. Dialogue domains are usually at least exponential in the num-

ber of distinct instances they can generate. Even a very large dialogue corpus

would represent only a tiny fraction of the total set of plausible dialogues.

As a result, supervised learning faces severe sparsity issues and a significant

amount of abstraction is needed to bound the space of behaviour that can

be learnt. Even if the system’s behaviour can be learnt in a supervised fash-
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ion, it would be restricted to imitating form of particular behaviour at a

particular turn. There is no guarantee that such behaviour would lead to a

successful dialogue [51].

An alternative is to use reinforcement learning, where the dialogue is

modelled as a sequential decision process and the dialogue management

behaviour is optimised with respect to an objective measure of dialogue

performance [33]. In contrast to the supervised learning approach, where

the dialogue manager’s behaviour is only confined to one that occurs in

the corpus, a dialogue manager using reinforcement learning can explore all

possible behaviour. It is therefore able to choose a strategy which optimises

the overall performance as defined by the objective measure. The next

section provides an introduction to reinforcement learning theory.

2.2 Reinforcement learning in dialogue manage-

ment

Reinforcement learning is a machine learning method whereby the agent (the

machine) learns from interaction with the environment [32]. The machine

has a perception of the environment, which is represented by a state. It

interacts with the environment by taking actions and receiving rewards. The

aim is to take actions that lead to the highest expected long-term reward.

In principle, the state the machine is in depends on all previously visited

states, as well as the actions it has taken. However, optimising an action

based on all previously visited states and actions is intractable. Accordingly,

the state is assumed to be satisfy the Markov property – it depends only on

the previous state.

The remainder of this section explains the Markov decision processes and

the way in which it can serve as a model for dialogue. It then introduces

an extension called the partially observable Markov decision process and

discusses its use in dialogue modelling.

2.2.1 Markov decision process

A Markov decision process (MDP) starts with the assumption of a set of

states that a machine can be in at every particular time step, S, and a

set of actions, A, that it can take in these states. At each time step t
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Figure 2.1: Markov decision process.

the machine is in a state st and takes an action at. It will then make

a transition to the next state st+1 and receive a reward rt+1. The tran-

sition probability will depend only on the previous state and the action

taken, Pa
ss′ = P (st+1 = s′|st = s, at = a) and the system therefore satis-

fies the Markov property. Note that the transition probabilities allow for

either deterministic or stochastic transitions. In a similar way, the reward

that is obtained is functionally dependent only on the state and the ac-

tion taken rt+1 = r(st = s, at = a) and takes values r ∈ R. As an al-

ternative one can also consider the reward to be a stochastic process, in

which case the expected value of the immediate reward in time step t + 1

is Ra
s = E(rt+1|st = s, at = a). One way of visualising the Markov decision

process is to represent it as a dynamic Bayesian network where states and

rewards are fully observable. An example of part of the MDP network is

given in Fig. 2.1, where shaded nodes represent observable variables.

In an MDP model, decisions on which action to take are determined by

a policy, π, which is a mapping from the states of the system to the possible

actions, π : S → A. The discounted return, Rπ
t , for a particular policy π is

the sum of the discounted rewards that the policy π achieves from time t:

Rπ
t =

∞∑

i=0

γirt+i+1, (2.1)

where, for each i, action at+i = π(st+i) is taken, rt+i+1 is the obtained reward

and γ is a geometric discount factor γ ∈ [0, 1]. If the state transitions are

random and the immediate reward is a random process, then the discounted
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return is also a random process.

The Value function V π(s) for each state s is defined as the expected

discounted return in state s when a system follows policy π, V π : S→ R:

V π(s) = Eπ (R
π
t |st = s) = Eπ

(
∞∑

i=0

γirt+i+1|st = s

)
, (2.2)

where expectation Eπ is calculated over all possible state sequences that can

be generated with policy π.

In a similar way, the Q-function Qπ(s, a), for each state s and action a,

is defined as the expected discounted return that is obtained when action a

is taken in state s and the policy π is followed from then on, Qπ : S×A→ R:

Qπ(s, a) = Eπ (R
π
t |st = s, at = a) = Eπ

(
∞∑

i=0

γirt+i+1|st = s, at = a

)
,

(2.3)

where again expectation Eπ is calculated over all possible state sequences

that can be generated with policy π.

A discounting factor of less than 1 is normally used to favour policies

that generate high rewards sooner rather than later in the decision process.

A discounting factor equal to 1 can only be used in tasks that are certain to

finish in a finite number of steps, called episodic tasks. Dialogue management

is one example of an episodic task.

From Eq. 2.2 and 2.3 the following relation holds between the Value

function V π(s) and the Q-function Qπ(s, a) for the same policy π:

V π(s) = Qπ(s, π(s)). (2.4)

The aim of reinforcement learning is to obtain the optimal policy, i.e.,

the policy that maximises the Value function. Assuming a finite state space

S, the exact solution to the optimal Value function1 is given by the Bellman

optimality equation [52]:

V (s) = max
a

∑

s′∈S

Pa
ss′ · (R

a
s + γV (s′)). (2.5)

1Strictly, the optimal Value function should be denoted as V
π∗

(s), where π
∗ is the

optimal policy. In order to keep the notation simple, the policy marker is dropped. Note,
additionally, that for one optimal Value function there exist many optimal policies and
vice versa [32], which further justifies the adopted notation.
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2. Background

In a similar way, the optimal Q-function is expressed by

Q(s, a) =
∑

s′∈S

Pa
ss′ · (R

a
s + γmax

a′
Q(s′, a′)). (2.6)

The optimal Q-function Q(s, a) and the optimal Value function V (s) are

related by

V (s) = max
a

Q(s, a). (2.7)

The optimal policy can be derived from the optimal Value function

π(s) = argmax
a

∑

s′

Pa
ss′ [R

a
s + γV (s′)], (2.8)

or from the optimal Q-function

π(s) = argmax
a

Q(s, a). (2.9)

In order to solve Eq. 2.5 directly, several assumptions are needed. Firstly,

as mentioned before, the Markov property has to be satisfied. It can be very

difficult to build a state that on the one hand satisfies the Markov property

and on the other hand is simple enough allow for learning to be performed.

Secondly, the dynamics of the environment, namely the transition probabil-

ities and the reward, need to be known. Finally, sufficient computational

resources are required to calculate the solution. Although the dialogue state

can be approximated, the reward can be heuristically defined and the dy-

namics can be hand-crafted or estimated from data. Obtaining the solution

directly from the Bellman equation is normally intractable for large state

spaces [32].

2.2.2 MDP policy optimisation

Solutions to the problem of MDP policy optimisation are often separated

into model-based and model-free methods. Model-based methods assume

that the dynamics of the environment are known, i.e., the transition prob-

abilities and the reward function, so that the policy can be optimised off-

line – without direct interaction with the environment. Dynamic program-

ming [52] is an example of a model-based method. Model-free methods learn

through direct interaction on-line in a (possibly simulated) environment

without assumptions about the underlying model of the environment. Monte
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2.2 Reinforcement learning in dialogue management

Carlo methods and temporal-difference learning are examples of model-free

methods [32]. Model-free approaches often use ǫ-greedy learning, which in-

volves exploration – taking a random action to explore the state space with

probability ǫ, and exploitation – taking the action according to the best

current policy with probability 1− ǫ.

Algorithms that solve MDPs can also be divided into on-policy and off-

policy methods. On-policy methods use the current best estimate of the

optimal policy for exploitation while re-estimating it at the same time. Off-

policy methods, on the other hand, estimate the optimal policy while ex-

ploiting another policy which may be suboptimal. The main advantage of

on-policy methods is that they accumulate larger reward during the training

and are faster in convergence to the optimal policy and thus more useful in

direct on-line learning. Off-policy methods are typically used when there is

a corpus of the machine-environment interaction available, generated with

a suboptimal policy. Off-policy can then use the corpus to learn the opti-

mal policy. However, it requires that every state action pair appears in the

corpus, otherwise further approximations are needed [32].

Some of the most common algorithms used for MDP policy optimisation

will now be presented. The exposition is based on the description given

in [32], where the interested reader can also find a discussion on the conver-

gence properties of these algorithms.

The value iteration algorithm is a commonly used dynamic program-

ming algorithm for obtaining the optimal Value function (see Algorithm 1).

Before the algorithm is explained, it is important to discuss the concepts of

stationary and non-stationary policies.

The Value function as defined in Eq. 2.2 gives the same value for a

particular state irrespective of the time step when the machine is in that

state. A Value function that has such a property is called stationary. Its

respective policy is also stationary – it does not depend on time, but for a

particular state always proposes the same action.

A Value function that gives different values for the same state, depending

on the time step the machine is in, is called a non-stationary Value function.

A policy associated with such a Value function is a non-stationary policy –

it gives different actions for the same state depending on the time step. If

the MDP model (the transition probabilities and the expected reward) does

not change with time, it can be shown that there is always an optimal policy
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2. Background

which is stationary [32].

The value iteration algorithm re-estimates the optimal Value function at

every time step. During the process of optimal Value function estimation,

the optimal Value function in one state at one time step differs from the

estimate at another time step for the same state. Thus, during the value it-

eration process, the Value function that is being estimated is non-stationary

and it converges to a stationary Value function with enough iterations. The

value iteration algorithm makes use of the recursive property of the Bell-

man equation (Eq. 2.5) to relate optimal Value function estimates between

between two consequent time steps. If 1-step denotes the one time step to

the final state, then the Value function in 1-step for some policy π in state

s is simply the reward associated with action a when it is taken in state s,

where action a is determined by policy π, a = π(s). In general, the Value

function of policy π in state s in t-step is the reward obtained by taking

action a, where a = π(s), and the discounted Value function in (t− 1)-step

of policy π in the next state. Because of this recursive relationship it is

possible to initialise the Value function arbitrarily for 1-step and iteratively

to update and maximise the Value function for each subsequent step until

the difference between the t-step and the (t − 1)-step Value functions falls

below a given threshold.

Algorithm 1 Value iteration

1: for all s ∈ S do

2: V (s)← arbitrary
3: end for

4: repeat

5: for all s ∈ S do

6: v ← V (s)
7: V (s)← maxa

∑
s′ P

a
ss′ [R

a
s + γV (s′)]

8: ∆← max(∆, |v − V (s)|)
9: end for

10: until ∆ < θ
11: for all s ∈ S do

12: π(s) = argmaxa
∑

s′ P
a
ss′ [R

a
s + γV (s′)]

13: end for

The Monte Carlo control algorithm (Algorithm 2) is a Monte Carlo

method commonly used in episodic tasks. In these tasks one defines a start

state and a collection of terminal states. An episode is then a sequence of
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2.2 Reinforcement learning in dialogue management

states from the initial to a terminal state, generated in interaction with the

environment. The Monte Carlo control algorithm starts by taking actions

according to an arbitrary policy and generating episodes. For each episode,

the sequence of states visited and actions taken is recorded. At the end

of the dialogue, the discounted return1 R is computed for each state and

action pair and used to update the corresponding Q(s, a) value. The up-

dated value should reflect the average discounted return over all dialogues.

The algorithm also maintains a count of the total number of times, N(s, a),

that each action pair has been visited. The policy is updated after each

episode to select the actions that have accumulated the highest reward for

each state. During an episode, however, the policy stays constant. This

algorithm is particularly useful for policy optimisation of dialogue managers

since a dialogue can be regarded as an episode generated in interaction with

a user as long as the user or an independent evaluator gives a reward at the

end of the dialogue.

Algorithm 2 Monte Carlo control algorithm

1: for all s ∈ S,a ∈ A do

2: Q(s, a)← arbitrary
3: N(s, a)← arbitrary
4: π(s)← arbitrary
5: end for

6: repeat

7: Generate an episode using exploitation of policy π and exploration
with probability ǫ i.e. ǫ-greedily and record (s, a) that appeared

8: for all (s, a) pairs appearing in the episode do

9: R← discounted return following the first occurrence of (s, a)

10: Q(s, a)← Q(s,a)∗N(s,a)+R

N(s,a)+1

11: N(s, a)← N(s, a) + 1
12: end for

13: for all s in the episode do

14: π(s) = argmaxaQ(s, a)
15: end for

16: until convergence

Temporal-difference (TD) learning represents another class of MDP pol-

icy optimisation algorithms. TD learning combines the ideas of Monte Carlo

and dynamic programming methods. As with Monte Carlo, learning is per-

1Since this is an episodic task the return does not need to be discounted.
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formed from experience at the level of an episode, but the Value function

or the Q-value estimates are updated at each step, upon a difference in the

obtained and expected rewards – the temporal difference. This entails a re-

cursive relation similar to that used in dynamic programming algorithms.

Examples of TD algorithms given here are Q-learning and Sarsa.

The Q-learning algorithm is an example of an off-policy TD learning

(see Algorithm 3). The update is the temporal difference expressed as the

difference between the discounted maximal future prediction and the cur-

rent Q-value estimate deducted for the observed reward: γmaxa′ Q(s′, a′)−

(Q(s, a)−r) (see line 7 in Algorithm 3). The step size parameter λ, 0 ≤ λ ≤ 1

controls how much the current temporal difference element contributes to

the Q-value estimation. Q-learning is an off-policy method since one policy

is followed while another is being estimated. This is due to the maximisation

in the temporal difference.

Algorithm 3 Q-learning

1: Initialise Q(s, a) arbitrary for every (s, a) pair
2: for all episode do

3: Initialise s
4: for all step in the episode do

5: Choose a from s ǫ-greedily using policy derived from Q
6: Take action a, observe r, s′

7: Q(s, a)← Q(s, a) + λ[γmaxa′ Q(s′, a′)− (Q(s, a)− r)]
8: s← s′

9: end for

10: end for

In contrast to Q-learning, Sarsa is an on-policy TD algorithm (see Algo-

rithm 4). The temporal difference here is simply the difference between the

discounted future prediction and the current Q-value estimate deducted for

the observed reward: γQ(s′, a′)− (Q(s, a)−r) (see line 8 in Algorithm 4). It

follows the same policy according to which it estimates Q-values. Thus this

algorithm has the property of accumulating the highest reward while opti-

mising that policy. A further modification of this algorithm that includes

the estimate of uncertainty of the Q-value for every state-action pair will be

given in Chapter 6, along with an explanation of why such an estimate is

particularly useful in dialogue management.

In order to optimise the policy, the state-action space must be fully

explored, which in real-world problems can be very large. In order to simplify
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2.2 Reinforcement learning in dialogue management

Algorithm 4 Sarsa

1: Initialise Q(s, a) arbitrary for every (s, a) pair
2: for all episode do

3: Initialise s
4: Choose a from s ǫ-greedily using policy derived from Q
5: for all step in the episode do

6: Take action a, observe r, s′

7: Choose a′ from s′ ǫ-greedily using policy derived from Q
8: Q(s, a)← Q(s, a) + λ[γQ(s′, a′)− (Q(s, a)− r)]
9: s← s′; a← a′

10: end for

11: end for

the problem, a particular shape of Q-function is usually assumed so that

fewer points are needed for it to be approximated. This is often performed

by choosing a set of basis functions and defining the unknown Q-function as

a parametrised combination of them. These parameters can be then found

using gradient methods [53]. This approach be discussed in more detail in

Section 2.2.6.

2.2.3 Dialogue as a Markov decision process

Dialogue may be seen as a sequential decision process in terms of the dialogue

states, the system actions and the policy. If the dialogue state satisfies the

Markov property, then the dialogue can be modelled as a Markov decision

process [33, 51, 54, 55, 56, 57, 58, 59]. If an MDP model is to be applied to

a real-world dialogue system there are several issues to be resolved. These

include how to optimise the policy, what to include in the dialogue state

and how to define the reward function.

Modelling dialogue as an MDP allows a policy to be directly optimised

via interaction with people. However, many interactions are needed to op-

timise an MDP policy and hence this approach has only been successful in

practice for dialogue systems with a relatively small state space where the

system can learn to choose between a small set of actions predefined by an

expert for each dialogue state. In [60] this was achieved for a domain which

had 149 entities and 3 slots that could each take up to 9 values. However,

not all plausible combinations were represented in the dialogue state, so the

number of possible dialogue states was small, about 300. There were also
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only a few possible actions associated with each state that the system could

choose from.

Another way of optimising a dialogue policy is via a combination of su-

pervised and reinforcement learning. Supervised learning enables a model

of the user to be learned, i.e., transitions between different dialogue states,

which is then used to simulate user behaviour. The dialogue manager can

then be trained in interaction with the user simulator by means of reinforce-

ment learning. The advantage is that an unlimited number of dialogues can

be performed automatically to find the optimal policy [51].

In order to model dialogue as a Markov decision process, the dialogue

state must satisfy the Markov property. Methods for defining dialogue state

using a corpus of dialogues have been explored in [54]. The basic idea is to

define the set of required information at every dialogue step. The dialogue

state can then be defined by a small set of boolean indicators for a part of

the information that occurs in the corpus. In that way the state space is

small enough for policy optimisation to be tractable, but the shortcoming

is that its expressibility is greatly restricted. If the dialogue state is signifi-

cantly extended, it becomes difficult to ensure the tractability of the learning

process even if the optimisation takes place in interaction with a simulated

user. A way to deal with this problem is to allow the state to incorporate a

variety of information, but to optimise the policy in the reduced state space

and then perform a heuristic mapping to the original space [55, 61]. Yet

another way of ensuring tractability in the policy optimisation is to perform

exploration only on the states that are found in a dialogue corpus and to

define manually the policy on unexplored parts of the space [57, 62, 63].

The reward function for dialogue policy optimisation can be defined in

many different ways. Usually, it contains a measure of how successful the

dialogue was, for example whether the information that the user asked for

has been given, and how efficient it was, for example how long the dialogue

took [51]. It can also contain other parameters such as the number of times

the database was queried. The reward function may also depend on the

domain – for example, there may be domains where longer dialogues are

preferred.

Modelling dialogue as a Markov decision process and adopting and ex-

tending the reinforcement learning framework has yielded dialogue poli-

cies that outperform hand-crafted rules for dialogue management behaviour
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2.2 Reinforcement learning in dialogue management

according to both objective measures [56] and real user subjective eval-

uation [58], as well as the human behaviour from a wizard-of-Oz experi-

ment1 [58].

As an example, consider the NJFun System, which is one of the fist

MDP-based spoken dialogue systems built for a real-world task and tested

on real users [58]. It provides information about entertainment in New Jer-

sey, covering a large scope of potential user requests. The dialogue state is

most compact to enable tractable application of reinforcement learning. It

consists of several features that mainly correspond to slots’ status flags and

also includes ASR confidence scores. The approach taken was to estimate

the MDP model from a dialogue corpus and then optimise the policy using

model-based reinforcement learning, as discussed in the previous section.

The dialogue corpus used for the model estimation was obtained in interac-

tion with real users using a stochastic expert-coded policy. For each dialogue

state a set of applicable actions was defined from which the policy then ran-

domly chose. The set of applicable actions was defined in such a way that

the stochastic policy still generated reasonable behaviour. Once the model

was estimated, the value iteration algorithm (see Algorithm 1) was applied

to obtain the optimal policy. The optimal policy was evaluated to real users

and compared to both the stochastic policy used for corpus generation and

a set of expert-coded policies. In both comparisons the MDP showed an

increase in performance.

The Markov decision process offers a model for dialogue management

that can make a dialogue manager less dependent on the domain and train-

able from data. With enough approximations it can enable real-world spoken

dialogue systems to be built. However, a critical requirement for a spoken

dialogue system is that it is robust to noise. Some improvements in ro-

bustness can be made by taking into account ASR confidence scores in the

input [54]. However, the MDP does not include a principled way of dealing

with a noisy environment, since it assumes that the dialogue state is fully

observable and it therefore does not keep track of alternative dialogue states

during the dialogue. In real situations where the user input is corrupted

with noise, keeping track of alternative dialogue states can produce a better

1This is an experiment where a human replaces a part of the speech application that
is being tested while the subjects remain unaware of this [64]. In a spoken dialogue system
this is normally the dialogue manager [65].

25



2. Background

Figure 2.2: Partially observable Markov decision process.

error recovery mechanism. The partially observable Markov decision pro-

cess (POMDP), discussed in the next section, models the dialogue state as a

latent variable, the distribution of which is estimated based on noisy obser-

vations. POMDPs therefore offer the possibility of substantially improving

the robustness of a spoken dialogue system.

2.2.4 Partially observable Markov decision process

The definition of a partially observable Markov decision process begins with

a set of states, S, that a machine can be in, a set of observations, O, that

the machine can observe and a set of actions, A, that it can take. Unlike

an MDP, the state that the machine is in at a given time st is unobservable

and must be inferred from observation ot. The machine takes an action

at and a transition is made to the next state st+1. A reward, rt+1, and a

new observation, ot+1, are then obtained from the environment. Transitions

between the states are defined by a transition probability, Pa
ss′ = P (st+1 =

s′|st = s, at = a). The observation probability is Ps′o′ = P (ot+1 = o′|st+1 =

s′). The expected reward at every state is given by Ra
s = E(rt+1|st = s, at =

a).

A partially observable Markov decision process can be represented as

a dynamic Bayesian network, a part of which is given in Fig. 2.2, where

shaded nodes denote observable variables. In contrast to Fig. 2.1 the states

are hidden and must be inferred from observation. Similar to the MDP, a

geometric discount factor γ ∈ [0, 1] is used to place more importance on the

rewards obtained early in the process.
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2.2 Reinforcement learning in dialogue management

At each time step, the machine is in a certain state st, but since the state

is unobservable the machine maintains a distribution over all possible states

at time t – called the belief state, b(st). Then, the probability of the machine

being in state s, s ∈ S, at time t is b(st = s). Belief state b(st) therefore takes

values b ∈ B where B = [0, 1]|S| is the belief space. The initial distribution

over states b(s0) is given by b0 = [b(s0 = s1), . . . , b(s0 = s|S|)]T. The

initial distribution b0, together with the observation probabilities Ps′o′ , the

transition probabilities Pa
ss′ and the reward expectations Ra

s , fully specifies

the POMDP model.

When a new observation arrives, the new belief state b(st+1) is obtained

as the probability distribution over all possible states at time t+ 1, given

the observation ot+1, the action taken at, and the previous belief state b(st).

Provided that the state space is finite, the new belief state can be computed

as follows:

b(st+1 = s′)

= P (st+1 = s′|ot+1 = o′, at = a, b(st) = b)

=
P (ot+1 = o′|st+1 = s′, at = a, b(st) = b)P (st+1 = s′|at = a, b(st) = b)

P (ot+1 = o′|at = a, b(st) = b)

∝ P (ot+1 = o′|st+1 = s′)

·
∑

s∈S

P (st+1 = s′|at = a, b(st) = b, st = s)P (st = s|at = a, b(st) = b)

= P (ot+1 = o′|st+1 = s′)︸ ︷︷ ︸
Ps′o′

∑

s∈S

P (st+1 = s′|at = a, st = s)︸ ︷︷ ︸
Pa
ss′

b(st = s), (2.10)

for every s′ ∈ S, where the belief state at time t, b(st), is given by b =

[b(st = s1), . . . , b(st = s|S|)]T, action a is taken at time t and observation o′

is observed at time t+ 1.

2.2.5 POMDP policy optimisation

Since the state in the POMDP always remains unobservable, the policy in

the POMDP is a mapping between belief states and actions. Unfortunately,

the continuous nature of the belief states makes policy optimisation in a

POMDP model non-trivial and computationally expensive. An outline of

the Value iteration algorithm for POMDPs is now given, based on a more

detailed description in [34]. In order to apply the value iteration algorithm
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the state space, the action space and the observation space must be discrete

and finite.

A POMDP policy π provides an action a from the action space A for

every element b of the belief space B, π : B → A. Such a policy does not

change with time and is therefore stationary. If the POMDP model does

not change over time, one can show that there is an optimal policy which is

also stationary [34].

The optimal Value function in each state is, similarly to the Bellman

equation for MDPs (Eq. 2.5):

V (s) = max
a

∑

s′∈S

Pa
ss′ ·

(
Ra
s +

∑

o′∈O

Ps′o′γV (s′)

)
. (2.11)

In the same way, the optimal Q-function in each state and action pair

is:

Q(s, a) =
∑

s′∈S

Pa
ss′ ·

(
Ra
s +max

a′

∑

o′∈O

Ps′o′γQ(s′, a′)

)
. (2.12)

Eqs. 2.11 and 2.12 yield the optimal Value function in every belief state,

V : B→ R, as the expectation of the optimal Value function over all states,

V (b) =
∑

s∈S

b(st = s)V (s), (2.13)

and the optimal Q-function in every belief state and action pair, Q : B×A→

R, as the expectation of the optimal Q-function over all states,

Q(b, a) =
∑

s∈S

b(st = s)Q(s, a), (2.14)

where b is the vector of probabilities [b(st = s1), . . . , b(st = s|S|)]T.

As with MDP value iteration, if the optimal policy is estimated in an

iterative process, it is non-stationary during the process of optimisation but

it converges to a stationary policy (Section 2.2.2).

A non-stationary POMDP policy can be seen as a function of the ob-

servation and the number of time steps needed to reach the final step. If

the machine is one time step before reaching the final state, then it obtains

one observation, o ∈ O, it takes an action specified by the policy for that

time step and observation o. In t time steps to the final state (t-step) it
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Figure 2.3: A t-step policy tree.

obtains an observation, takes an action specified by the policy and then fol-

lows the (t− 1)-step policy – the policy defined for t− 1 time steps. Thus,

the (non-stationary) policy may be viewed as a tree of depth t which has

an action associated with each node and each node has |O| edges – one for

each observation. This tree is called the policy tree, see Fig. 2.3, where

O = {o1, . . . , ok} and aji ∈ A, i ∈ {1, . . . , t} and j ∈ {1, . . . , k}.

Eq. 2.11 allows a relation between the Value functions at two time steps

to be established:

V π(s) =
∑

s′∈S

P
a(π)
ss′

(
Ra(π)
s +

∑

o′∈O

Ps′o′γV
o′(π)(s′)

)
, (2.15)

where a(π) is the action at the root of policy tree π, V π(s) is the Value

function of policy tree π in state s and V o′(π)(s′) is the Value function in

state s′ for the upper part of policy tree π where o′ is observed. In this way,

V π(s) relates to a t-step policy tree and V o′(π)(s′) to a (t − 1)-step policy

tree.

The Value function for the t-step policy tree π in the belief state at time

t is the expectation of the Value function for policy tree π over all states,

V π(b) =
∑

s∈S

b(st = s)V π(s), (2.16)

where b is the vector of probabilities [b(st = s1), . . . , b(st = s|S|)]T.
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If Πt is the set of all policy trees at step t, the t-step optimal Value

function is the Value function of the best policy tree at step t:

Vt(b) = max
π∈Πt

∑

s∈S

b(st = s)V π(s). (2.17)

From Eq. 2.16, it follows that each policy tree at time t has a Value function

which is linear in the belief state. The optimal value at time step t is the

upper surface of these functions yielded by all possible policy trees at time

t, see Eq. 2.17. Therefore, the Value function for a POMDP is piecewise

linear and convex for any finite t.

Consider, for example, a simple POMDP with state space S = {s1, s2}

and action space A = {a1, a2, a3}, and some finite observation set and the

rewards are r(s1, a1) = 1, r(s1, a2) = 4.5, r(s1, a3) = 4, r(s2, a1) = 5.5,

r(s2, a2) = 2 and r(s2, a3) = 4. The value iteration algorithm starts at

the 1-step, where all policy trees contain only one node, since there is only

one step to go. Therefore, there are three different policy trees, one for

each action from A. In Fig. 2.4, the Value function of each policy tree

is given. The horizontal axis represents the belief state. Since there are

only two states, the belief in one state determines the belief in the other,

b(s1) = 1−b(s2). Thus the belief state can be represented in one dimension.

The vertical axis represents the expected discounted reward for 1 step – the

1-step Value function. In the 1-step of value iteration, the interpretation

of the expected discounted reward is just the reward that is obtained after

taking one action. When b(s1) is equal to 0 the machine is certain to be

in state s2 so the Value function is the reward that is obtained by taking a

particular action in state s2. The case when the machine is in state s1 is

similar. Since the Value function is linear in b(st), the Value function for

each 1-step policy tree is fully specified by its value at these two end-points.

In general, the Value function of each policy tree is a multidimensional

hyperplane where the number of dimensions is |S| − 1. The upper surface of

these Value functions represents the optimal 1-step Value function, which, in

the example in Fig. 2.4, is denoted by a full line, showing that the POMDP

Value function is piecewise linear and convex.

Each policy tree can represent the optimal strategy at some point in

the belief space and therefore it can contribute to the final optimal Value

function. However, if the t-step Value function of policy π is under the t-
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step optimal Value function, the policy π does not contribute to the (overall)

optimal Value function. Therefore, such a policy tree does not have to be

taken into account for the next step of the value iteration algorithm. Each

iteration of the value iteration algorithm for policy optimisation thus consists

of two parts: a generation step – updating the Value function at step t+ 1

using the Value functions of the policy trees in step t, and a pruning step –

removing the policy trees in which the Value function fall under the surface of

the optimal Value function in step t+1. This process is repeated until there

is no change in the optimal Value function estimation for two consecutive

steps.

Given the set of the Value functions of pruned policy trees at time step

t− 1, V+
t−1, the set of actions A and a set of observations O, the number of

operations needed to obtain the set of the Value functions of policy trees at

time step t, Vt is |A||V+
t−1|

|O|. Thus, every iteration of the value iteration

has exponential complexity which makes it intractable even for small scale

problems. Although there are ways of making the algorithm more efficient,

such as the Witness algorithm [34] or using an approximate solution, as in

the Point-based value iteration algorithm [66, 67], these are only suitable

for relatively small action/state problems and thus not directly applicable

for large state space applications. This is particularly the case for dialogue

management in real-world problems where the observation set can be infi-

nite.

An alternative policy optimisation process is based on so-called grid-

based learning. On the assumption that the POMDP state S is discrete and

finite and that the belief state can be tractably maintained, the POMDP

model can be viewed as an MDP model in which the state space is the belief

space of the original POMDP, which is [0, 1]|S| [34]. The transition model

of that MDP is defined by the belief update formula Eq. 2.10. If a distance

metric is defined on [0, 1]|S| it can be used to define a finite number of points

in this space, grid points, such that the distance between any two points

from this space is not smaller than a certain threshold ν and that for every

non-grid point in this space there exists a grid point such that the distance

between the two is less then ν. Every time a point in the belief space is

visited it is approximated with its closest grid point. The set of grid points

then define a discrete MDP. This allows for (discrete) MDP algorithms to

be used to find an optimal policy on the grid points [68]. However, the tran-
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Figure 2.4: The optimal 1-step Value function.

sition model of this MDP is unknown, since many belief states map to the

same grid point. While the value iteration algorithm guarantees convergence

to the true policy given enough iterations, it requires the transition model

to be known. The speed of convergence not only depends on the number

of iterations, but also on the number of grid-points. If the number of grid

points is too small, then approximating a belief state point with its closest

grid point can lead to suboptimal results since two very different belief state

points can be approximated with same grid point. Conversely, if the num-

ber of grid-points tends to infinity, the MDP policy optimisation becomes

intractable.

2.2.6 Dialogue as a partially observable Markov decision pro-

cess

The partially observable Markov decision process framework offers a prin-

cipled way of handling the intrinsic uncertainty that occurs in dialogue by

assuming only partial observability of the dialogue state [20, 21, 69, 70, 71,

72, 73, 74].

When a dialogue is modelled as a partially observable Markov decision

process, the dialogue manager maintains a distribution over states at each

dialogue step – the belief state. The policy then maps the belief state to an
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appropriate action. Thus the uncertainty is taken into account in the policy

optimisation process and the system can learn how to behave optimally

under differing levels of uncertainty to achieve a successful dialogue.

For simple domains, when the number of states is around 10, one can

tractably maintain the exact belief state and use approximate policy optimi-

sation. Past researchers have shown that the performance of such a dialogue

manager outperforms the equivalent MDP [21, 69]. However, problems oc-

cur when applying this approach to larger domains, particularly when the

number of states is significantly larger. Two of the main issues that arise

are effectively maintaining the belief state and tractably performing policy

optimisation.

In order to deal with these limitations, one can factor the dialogue state

to include some reasonable conditional independence assumptions that apply

in many situations and still satisfy the Markov property [75]. To explain

this it is useful to reproduce the belief update formula Eq. 2.10:

b(st+1 = s′) ∝ P (ot+1 = o′|st+1 = s′)
∑

s∈S

P (st+1 = s′|amt = am, st = s)b(st = s),

(2.18)

where st is the dialogue state at time t, amt is the system’s action1 at time

t, ot+1 is the observation at next time step. The dialogue state st can be

composed of the user goal sut , the user action aut and the dialogue history

sdt . The belief state then becomes a joint probability distribution of the

user goal, the user action and the dialogue history, b(st) = P (sut , a
u
t , s

d
t ).

This will be denoted as b(sut , a
u
t , s

d
t ). The user goal represents the task that

the system has to fulfil – for example, provide information about an entity

with particular attributes. The user action represents the set of semantic

concepts that the user intended to communicate to the system. The dia-

logue history records those events that are important to maintaining the

dialogue flow – for example when the user made a confirmation or the sys-

tem requested information. Several conditional independence assumptions

are made. Firstly, the observation depends solely on the (true) user action,

i.e., what the user intended to say. Secondly, the user action depends only

on the system’s action and the user goal. Thirdly, the user goal depends

1In dialogue, both user and system take actions. In order clearly to distinguish between
the two, the system’s action at time t is denoted as am

t and its instance as am.
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only on the previous user goal and the system’s action. Finally, the dialogue

history depends only on the previous dialogue history, the user goal, the

user action and the system’s action. These assumptions can be represented

as the dynamic Bayesian network, as shown in Fig. 2.5.

This factorisation makes it possible to simplify the belief update process.

This process now yields four update components: the observation model, the

user action model, the user goal model and the dialogue history model, see

Eq. 2.19 where Su is a set of all user goals, Au is a set of all user actions

and Sd is a set of all dialogue histories.

b(sut+1 = s′u, a
u
t+1 = a′u, s

d
t+1 = s′d)

∝ P (ot+1 = o′|sut+1 = s′u, a
u
t+1 = a′u, s

d
t+1 = s′d)∑

su∈Su,au∈Au,sd∈Sd

P (sut+1 = s′u, a
u
t+1 = a′u, s

d
t+1 = s′d|a

m
t = am, sut = su, a

u
t = au, s

d
t = sd)

b(sut = su, a
u
t = au, s

d
t = sd)

= P (ot+1 = o′|aut+1 = a′u)

P (aut+1 = a′u|s
u
t+1 = s′u, a

m
t = am)

∑

su∈Su,au∈Au,sd∈Sd

P (sut+1 = s′u|s
u
t = su, a

m
t = am)

· P (aut+1 = a′u|s
u
t+1 = s′u, a

m
t = am)

· P (sdt+1 = s′d|s
u
t+1 = s′u, a

u
t+1 = a′u, s

d
t = s′d, a

m
t = am)b(sut = su, a

u
t = au, s

d
t = sd)

= P (ot+1 = o′|aut+1 = a′u)︸ ︷︷ ︸
observation model

P (aut+1 = a′u|s
u
t+1 = s′u, a

m
t = am)︸ ︷︷ ︸

user action model∑

su∈Su

P (sut+1 = s′u|s
u
t = su, a

m
t = am)︸ ︷︷ ︸

user goal model∑

sd∈Sd

P (sdt+1 = s′d|s
u
t+1 = s′u, a

u
t+1 = a′u, s

d
t = sd, a

m
t = am)︸ ︷︷ ︸

dialogue history model∑

au∈Au

b(sut = su, a
u
t = au, s

d
t = sd) (2.19)

Using this factorisation proved to be a highly effective way of maintaining

the belief for state spaces of order 1000 [75]. However, applying this to
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Figure 2.5: Partially observable Markov decision process for dialogue mod-
elling.

even larger domains requires more approximations. One way of achieving

tractability in belief maintaining in a real-world domain is to group states

together and thus maintain the belief only on the most probable states [76]

(a more detailed description will be given in Chapter 3).

An alternative way of achieving tractability is to factor the state space

further into independent elements that are derived using the expert knowl-

edge about the domain. This approach has been taken in [71], where the

dialogue state is factorised into fully independent elements. This then allows

for the parametrised transition and observation probabilities to be assumed

for each state element and the belief state to be updated on each of these

elements independently, using belief propagation. This idea was further

developed in the Bayesian Update of Dialogue State (BUDS) system [77],

where only conditional independence between elements of the state is as-

sumed and the belief is then updated using loopy belief propagation. An

alternative approach makes use of particle filters to update the belief [78].

However, this approach exhibited a response time of 3 seconds for a domain

with 20 slots where each slot had up to 13 values. On the other hand, the

approach taken in BUDS was able to update belief in real time for a do-

main with 42 entities and 10 slots [77] and a domain with 16 slots some of
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which had more than 300, 000 values [79]. It was also shown in [73] that the

parameters of the transition and observation probabilities can be tied and

learnt automatically from a dialogue corpus using expectation propagation.

However, the problem remains of how efficiently to maintain belief state for

large dialogue domains for dialogues of unlimited length if no independence

assumptions are considered among the elements in dialogue state. These

issues will be addressed in this thesis within the Hidden Information State

framework in Chapter 4.

The second cause of intractability is policy optimisation. Dialogue policy

optimisation using POMDP learning methods was explored in [21, 69, 71,

80], and has been shown to yield better performance than MDPs. However,

the state space of these systems is still modest relative to real-world applica-

tions. Alternative solutions view the POMDP as a continuous-space MDP

and train the policy in interaction with a simulated user. One approach is to

apply grid-based methods to discretise the space and then use MDP policy

optimisation algorithms. Such an approach was explored in [76] for a real-

world dialogue task and will be explained in more detail in Section 3.3.5.

Another approach, taken in the BUDS system [77], is to use a parametric

approximation of the optimal policy. The following steps are taken. A set of

feature functions is defined on the full belief space using expert-knowledge of

the domain. A grid-based method is then applied to create feature vectors

with discrete values, which are finally used for policy approximation. This

allows gradient methods to be applied to find the optimal policy parameter

values (about 800 parameters). The optimal policy is then found using Nat-

ural Actor Critic [53] algorithm. This is a reinforcement learning algorithm

which makes use of the natural gradient [81]. The reason it performs well

is that the natural gradient makes use of the shape of the space to find the

steepest decent, and thus is highly efficient [77].

On-line learning in direct interaction with real users is of a particular in-

terest in the area of spoken dialogue systems since it allows the optimisation

and adaptation of the policy while it is used. This thesis will address the

problem of policy optimisation using a Bayesian non-parametric approach

for function approximation, with the aim of making the optimisation, on the

one hand, less dependent on the expert-knowledge and, on the other hand,

faster so that it can be learned or improved in direct interaction with real

people (Chapters 6 and 7).
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2.3 User simulator

When adopting a reinforcement learning approach to dialogue policy opti-

misation, either model-based or model-free optimisation algorithms can be

applied (see Section 2.2). In order to apply the model-based approach to an

MDP model, state transition probabilities as defined in Section 2.2.1 need

to be available. For an POMDP model both transition and observation

probabilities need to be known (Section 2.2.4). Given an annotated dia-

logue corpus these probabilities can be estimated. Such an approach faces

sparsity problems and requires the use of further approximations [82, 83].

As a result, the model-free approach, where the policy can be optimised

directly in interaction with users, is often more appropriate. Although it

is theoretically possible to optimise a policy in direct interaction with real

users, for example via large call centres which serve tens of thousands of

calls per day, the policy’s performance at the initial stage of learning is

typically too low to be considered acceptable. Instead, it is common prac-

tice in a reinforcement learning approach to dialogue management that a

simulated user is used to interact with the dialogue manager during policy

optimisation [51, 77, 84, 85, 86, 87, 88].

There are many techniques that can be used for building a simulator, for

example graph-based [89] and agenda-based [90] techniques. These simula-

tors usually aim to exhibit two key characteristics: reasonable, goal-directed

behaviour and variability in the way it interacts with the dialogue manager

so that it can represent a wide coverage of potential users. The agenda-based

user simulator described in [90] was used in this thesis and a more detailed

description of its operation and evaluation will be given in Section 3.4.2.

There are, however, various statistical methods for learning the user sim-

ulator behaviour from a dialogue corpus. This is in principle more desirable

since that makes the process of dialogue modelling fully automatic [51]. Ex-

amples include n-gram methods [91], a simulated user built using Bayesian

networks [92], cluster-based user simulation [87], hidden-agenda [93] and

agenda-based user simulation with parameters estimated from data [94].
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2.4 Evaluation

While methods for evaluation of most data-driven tasks in speech and nat-

ural language processing are well-established [95], evaluating a spoken di-

alogue system requires interaction and is therefore difficult [96]. A spoken

dialogue system is built of distinct modules and although for most of them

there are defined methods of evaluation, joint evaluation of the complete

system is challenging. Evaluating the dialogue manager’s performance is

hard in itself, because of the vast space of possible dialogues.

The usual approach to evaluation is to have the dialogue manager in-

teract with humans, and let human judges rate the dialogues [38, 58]. This

makes it infeasible to evaluate all possible dialogues and is also costly and

time-consuming to perform. An alternative evaluation metric is to use the

reinforcement learning reward function [51], replacing the human judges.

Letting the user simulator instead of human users interact with the dia-

logue manager enables a wider coverage of dialogue space in evaluation. A

simulated user can generate an unlimited number of dialogues with a variety

of scenarios and varying noise levels [10, 77, 90, 97, 98]. A disadvantage of

this approach is the potential discrepancy between real user and a simulated

user behaviour.

This work will use a simple reward function effectively used in other stud-

ies [10, 77, 90] which encourages short and successful dialogues. An alter-

native would be to derive a reward function from ratings by human judges.

The PARADISE evaluation framework [99] predicts the user satisfaction

ratings using a corpus of dialogues annotated with real user satisfactions

and a set of objective measures. It defines the dialogue performance as a

weighted function of the dialogue success and dialogue-based cost measures,

such as the dialogue length or the number of times the system produced a

confirmation. The weights can be inferred from the annotated corpus using

regression. The measures are normalised so that they are applicable across

domains. While such a complex reward function may be desirable, for the

purposes of this thesis the use of a simple reward function is sufficient.

The main evaluation approach that will be taken in this thesis is to gen-

erate dialogues with the agenda-based simulated user in a range of noise

levels and to evaluate them using the reward function. Section 3.4 will give

details on these. This thesis will also use more fine-grained evaluation met-
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rics. These are the success rate and the average length of the dialogue, the

constituent parts of the reward function. In addition, the notion of success

may be further divided into partial and full completion of the underlying

task that the dialogue manager is supposed to fulfil.

It is important to note that evaluations on the simulated user will be used

here to contrast different methods that themselves do not encode any user-

dependency. Therefore conclusions drawn from these comparisons should

hold even if the system was trained and tested using a different user simu-

lator. The aim of these contrasts is to evaluate effectiveness of a particular

technique inside the dialogue manager rather than the dialogue manager as

a whole.

2.5 Summary

This chapter has outlined the research carried out in the domain of sta-

tistical spoken dialogue systems for task-oriented dialogues. Statistical ap-

proaches to dialogue modelling are typically based on the Markov decision

process model. The MDP model assumes that the dialogue can be viewed

in terms of the dialogue state, the system’s action and the reward. Rein-

forcement learning algorithms then allow the optimal dialogue policy to be

obtained. This chapter has offered a review of several reinforcement learn-

ing algorithms that are most commonly used to solve MDPs. In order to

deal with the intrinsic uncertainty in the dialogue state that occurs due to

speech understanding errors the dialogue can also be modelled as a partially

observable Markov decision process. This chapter has reviewed the basic

algorithms used to obtain the optimal policy in a POMDP and identified

the problem of tractability as the main obstacle to applying reinforcement

learning methods to real-world problems.

The next chapter will provide a detailed explanation of the Hidden In-

formation State model, which will be used for the rest of this thesis.
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Chapter 3

A real-world POMDP-based

dialogue manager

3.1 Introduction

The Hidden Information State (HIS) [76] system was one of the first scalable

POMDP-based dialogue systems able to sustain conversation in real time

and be tested on real users. It is based on an end-to-end statistical approach

to building spoken dialogue systems [20] and incorporates a POMDP model

for dialogue management in such a way that dialogues from a large domain

are made possible [35, 76, 100]. In this chapter an overview of the complete

system is given (Section 3.2) followed by an in-depth description of the di-

alogue manager component. Section 3.4 then explains how training and

evaluation are performed in interaction with a simulated user. This is fol-

lowed with a description of a real user evaluation (Section 3.5). Section 3.6

concludes the chapter.

3.2 The Hidden Information State system

The first prototype of the HIS system was built to provide tourist infor-

mation for tourists in the fictitious town of Jasonville. The system uses a

database of 42 entities such as restaurants, hotels and bars. Each of them

have a set of up to 10 attributes that the user can query. Using natural

language, the user can seek an entity with particular constraints and then

obtain information about each entity mentioned by the system.
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3. A real-world POMDP-based dialogue manager

3.2.1 System structure

The HIS system is structured as a collection of modules, as was shown in

Fig. 1.1. Speech recognition uses the ATK/HTK toolkits [101] with the

acoustic model trained on 40 hours of in-domain speech data, and the lan-

guage model trained on 80M words. 55K of these words were in-domain and

interpolation was used to incorporate them into the full language model.

The recogniser has a vocabulary of 2000 words. An important feature of the

recogniser is that it produces a scored N-best list of possible user utterances

for each utterance. In the ATK recogniser, the confidence score of a hypoth-

esised utterance is computed as a product of the posterior probabilities of

corresponding word arcs in the confusion network. When normalised, this

gives an estimate of the probability of each hypothesised utterance [102].

This input structure is used as an observation model in the belief update

process (see Eq. 2.19 in Section 2.2.6). The accuracy of these probabilities

are therefore particularly important if the dialogue manager is to be robust

to speech recognition errors.

The N-best list of hypothesised utterances is passed from the speech

recogniser to the semantic decoder, which decodes every utterance separately

to form a semantic representation of the user input, called a dialogue act. A

statistical semantic decoder is used, trained using support vector machine

(SVM) classifiers to provide the semantic concepts for each utterance in the

N-best list [30]. Since several recognition hypotheses may map to the same

dialogue act, the confidence score of each act is calculated as the sum of the

confidence scores of all utterances that map to that dialogue act.

The output from the dialogue manager is also in the form of a dia-

logue act. It is passed to the natural language generator which converts it

to a natural language sentence using simple, template-based rules. Finally

the speech is synthesised using an HMM speech synthesiser with proba-

bilistic modelling of F0 and using a globally tied distribution in unvoiced

regions [103].

An example dialogue with a real user in the TownInfo domain is given

in Table 3.3. It starts with an opening question from the system that allows

the user to take initiative and specify their request. For the initial turn the

internal output of each of the system’s modules is provided. The speech

recogniser provides a 10-best list of possible user utterances for a given
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System: Hello, how may I help you?

User: Hi. Could I have the name of a Russian restaurant which has 3 stars
please?

ASR I can I have the name of a Russian restaurant which has three stars
please.

I can I have the name of a Russian restaurant which jazz three stars
please.

I can I have the name of a Russian restaurant which last three stars
please.

I can I have the name of a Russian restaurant which has three stars
please.

I I I have the name of a Russian restaurant which has three stars please.

I can I have the name of the Russian restaurant which jazz three stars
please.

I can have the name of a Russian restaurant which has three stars please.

I I I have the name of a Russian restaurant which jazz three stars please.

I can I have the name of the Russian restaurant which last three stars
please

I can have the name of a Russian restaurant which jazz three stars please.

SD confirm(food=Russian,type=restaurant,stars=3) 0.50

confirm(food=Russian,type=restaurant,music=jazz, stars=3) 0.24

inform(food=Russian,type=restaurant,stars=3) 0.16

inform(food=Russian,type=restaurant,music=jazz,stars=3) 0.10

DM inform(name=”Saint Petersburg”,type=restaurant,food=Russian,
stars=3, music=ethnic)

System: Saint Petersburg is a nice restaurant, they serve Russian food, it has
3 stars, they play ethnic music.

User: What’s the price range please?

System: The Saint Petersburg is in the moderate price range.

User: What’s the address and phone number please?

System: Sure, the Saint Petersburg is on Park Road.

User: What’s the telephone number please?

System: Sure the Saint Petersburg is on Park Road; and the phone number is
702-70-03.

Table 3.1: A TownInfo dialogue.
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speech signal1. This 10-best list is passed to the semantic decoder (SD)

which then generates a 4-best list of dialogue acts with associated confidence

scores from this input. One can see how the prominent confusion between

jazz and has in the ASR 10-best list has resulted in the concept music=jazz

occurring in the semantic decoder’s 4-best list. The dialogue manager (DM)

then decides on a system action based on this list and its beliefs. The action-

selection process as well as the internal dialogue manager’s representation of

the dialogue state will be explained in more detail in the following section.

3.3 The Hidden Information State dialogue man-

ager

The Hidden Information State dialogue manager is a POMDP-based dia-

logue manager that can maintain its belief state during dialogues in a large

domain. Its belief update is based on a further approximation of the dialogue

state factorisation described in [75].

3.3.1 Dialogue act formalism

As far as dialogue management is concerned, the dialogue between the sys-

tem and the user takes place at dialogue act level. A dialogue act is an

internal representation of the user intention conveyed in the user utterance.

The dialogue act representation used here assume the act consists of a se-

quence of semantic concepts. The semantic concepts should be compact

enough that their number is kept relatively low. On the other hand, they

should carry enough information to sustain the dialogue flow. The dialogue

act formalism incorporates expert knowledge about the domain. However,

it is based on a well-established theory [104] and as such is extendible to

other task-driven dialogue domains.

A dialogue act in the HIS system consists of the dialogue act type and a

list of attribute-value pairs. The dialogue act type defines the intention con-

veyed in the utterance. For example, if the user is passing some information

to the system regarding their request, that corresponds to the inform dialogue

act type. If the user or the system is confirming a particular attribute-value

pair, then a confirm dialogue act type is used. The list of attribute-value

1For simplicity the ASR confidence scores are omitted.
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pairs refers to the specific concepts mentioned by the user or the system.

For instance, the utterance “Is that restaurant in the centre?” would be

represented by the dialogue act confirm(area=central, type=restaurant). In

some cases the order of the attribute-value pairs in the list is important. For

example, if the user said “I don’t want riverside area, I want something in

the centre.”, the corresponding dialogue act would be deny(area=riverside,

area=central). A complete list of dialogue acts with their descriptions is

given in Appendix A.

3.3.2 Domain ontology

As already noted in Section 2.1.2, dialogue managers normally keep a fixed

list of slots that are filled in during the dialogue. The HIS dialogue manager

uses a more structured representation via an ontology which defines the

relationship between different attributes and values that can occur in the

dialogue act. The ontology has a tree structure. The tree nodes are divided

into three groups: class nodes, lexical nodes and atomic nodes (see Fig. 3.1).

Class nodes can have many child nodes. The first is always atomic and

defines a specific instance of the class. The remainder consist of an optional

class node and one or more lexical nodes. Lexical nodes can have only a

single atomic child node.

Figure 3.1: Generic ontology structure.

The TownInfo ontology is given in Table 3.2, where examples of class

nodes are entity and type (bold font), lexical nodes are pricerange and

food (regular font) and atomic nodes are restaurant and Chinese (italic

font).
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The attributes listed in each dialogue act correspond to either class or

lexical nodes in the ontology; and the values that they take are represented

by atomic nodes. The tree root is a class node and it defines the user goal

in the most general way. Other class nodes define the user query in a more

precise manner. More specifically, each class node and its atomic child node

define an additional set of attributes that are represented by lexical nodes

and optionally a class node. For example, in the ontology from Table 3.2,

the atomic node restaurant for class node type defines an additional set of

lexical nodes: food, pricerange, music, drinks, and stars.

entity ← venue(type, area, name, address, near, phone, comment)
type ← hotel(pricerange, stars, price, drinks )
type ← restaurant (food, pricerange, price, music, drinks, stars)
type ← bar(drinks, music, pricerange)
type ← amenity
area = { central, east, west, ... }
food = { Italian, Chinese, Indian, ... }
pricerange = { cheap, expensive, ... }

Table 3.2: TownInfo ontology rules.

This allows the dialogue manager to make use of the hierarchical re-

lationship between the attributes to model the dependencies in each user

input. For example, in the tourist information domain if the user spec-

ified food=Italian, that would imply that the user wants type=restaurant

and entity=venue. Attribute-value pair pricerange=cheap is associated with

type=restaurant, type=bar and type=hotel, but not type=amenity.

3.3.3 State representation

One of the main obstacles in implementing a POMDP-based dialogue man-

ager in real-world systems is the intractability of the belief update equation

(Eq. 2.19 in Section 2.2.6). Adopting the factored state formalism [75], each

dialogue state consists of the user goal, the dialogue history and the last user

act. In any real-world dialogue, this combination can result in a vast number

of dialogue states and it would not be computationally tractable to maintain

a probability distribution over such a large state space.

As already noted in Section 2.2.6, the user goal represents a task that

the system has to fulfil. In this domain, the task is to give information about
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an entity which has attributes with certain values. The set of all possible

user goals is thus a set of all plausible combinations of attribute-value pairs,

which is determined by the domain ontology. It is clearly intractable to

maintain a probability distribution over such a large set. Therefore, in the

HIS system, the idea is to group user goals together into partitions and

maintain the probability over partitions rather than over all the user goals.

The set of partitions is such that any user goal is either a partition, or there

is a partition that that user goal belongs to. The set of partitions is created

dynamically during the dialogue. The partitions are split recursively using

the attribute-value pairs from the user input and the system output.

There are two main requirements for building partitions. First, one must

ensure that every partition is unique. Second, the partition representation

should be compact enough that the system can efficiently store them. As

already mentioned, the partitions are split using the attribute-value pairs

from the N-best list of the user input and the system output. They are

combined together using the relationships defined by the domain ontology,

see Table 3.2. This results in each partition being a tree from the ontology

with a single value for each partition node. In the original implementation of

the HIS system, nodes that have the same child nodes in different partitions

are shared among the partitions they appear in. This reduces the memory

requirement for storing the partitions.

An example of the partitioning process is given in Fig. 3.2. Initially there

is only one generic partition entity denoted by a box in Fig. 3.2. This parti-

tion corresponds to the root of the ontology tree. The system asks the open-

ing question “Hello, how may I help you?” Then, the user input “I’m looking

for an expensive Italian restaurant in the centre, please.” is received and se-

mantically decoded as inform(type=restaurant, pricerange=cheap, food=Italian,

area=central). Each attribute-value pair is recursively used for splitting the

generic partition. The partition splitting process is the following. Attribute-

value pair type=restaurant applies to the ontology tree where entity is venue.

Therefore, class node entity is split into node entity in such way that the

node entity is replicated and has a child atomic node venue. In that way,

the generic partition is split into two partitions – one which has nodes entity

and venue and other which just has the node entity. Since they appear in

both partitions, nodes entity are connected in an array. Node venue now

determines other child nodes of node entity in the partition it belongs to.
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These are defined by the ontology. For simplicity, only type and area are

shown in Fig. 3.2 and connected to node entity. Next, applying attribute-

value pair type=restaurant splits node type by replicating it as node type with

child atomic node restaurant. Similar to atomic node venue, node restaurant

also defines other child nodes of node type and one of these nodes is lex-

ical node pricerange. Attribute-value pairs pricerange=cheap, food=Italian,

area=central are then applied in the same way. Every time a node is split,

it is replicated and an array of all replicas is maintained. This partition

splitting process expands the partitioning tree and the resulting partitions

can be identified as combinations of all possible leaves in this tree. In the

example from Fig. 3.2 the process results in 11 partitions and they are listed

on the figure. In the cases where class or lexical nodes do not have any child

node in the respective partitions it is assumed that their value is unknown

– area=? in partition 2 versus area=central in partition 1 in Fig. 3.2. Before

an attribute-value is applied it is checked if it already matches any of the

nodes in the tree. In this way, it is made sure that no duplicates are created.

It is important to note that the number of partitions grows exponentially

with the length of the N-best list input and also with the length of the

dialogue itself. Therefore the length of both the N-best list and the dialogue

has to be restricted to ensure tractability.

A partition can be matched against the database and that can result

in a list of matching entities. The number of these entities is referred to

as the partition status, which is needed for the system to make a decision

in response to each system act. The list of partition statuses is given in

Table 3.3.

Initial partition has never been matched with the database
LargeGroup partition matches more than 3 entities in the database
Group partition matches fewer than 3 entities in the database
Unique partition matches a unique database entity
Unknown partition does not have matches in the database

Table 3.3: Partition status.

Similar to the user goal space, the number of possible dialogue histo-

ries is huge. In order to reduce this, the dialogue history is modelled as

states associated with the partition nodes. These states are called ground-

ing states. They model the common ground that the system and the user
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Figure 3.2: Partition splitting.

Init Initial state
UReq Item requested by user with expectation of an immediate answer
UInfo Item supplied by user during formation of a query
SInfo Item supplied by system
SQry Item queried for confirmation by system
Deny Item denied
Grnd Item grounded

Table 3.4: States of the grounding model.

may have about a concept (attribute or value) at a particular stage dur-

ing the dialogue. For example, the user may asked for the value of food,
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Initial default hypothesis state
Supported hypothesis has at least one grounded node
Offered hypothesis has been offered to the user
Accepted hypothesis has been accepted by the user
Rejected hypothesis has a denied node
Completed hypothesis is complete

Table 3.5: Hypothesis status.

or inform about the value of area. The list of the grounding states and

their meaning is given in Table 3.4. The transitions between these states

are deterministic and are implemented via a finite state machine. For ex-

ample, if the partition contains nodes cheap, hotel, area and the user says

inform(type=hotel, pricerange=cheap) then the state of nodes cheap and ho-

tel become UInfo, while node area remains in the Init state. Then, if the

system says request(area) the node area transits to SQry state. These are

important for the action selection process. The grounding model itself is

hand-crafted, built using dialogue transition theory [105] and is expandable

to most limited domain query dialogue problems.

The combination of a partition, a user act from the N-best list and the

associated dialogue history forms a hypothesis, i.e., a single member of the

partitioned state space. A probability distribution over the most likely hy-

potheses is maintained during the dialogue and this distribution constitutes

the POMDP’s belief state, as explained further in Section 3.3.4. The com-

pressed version of the grounding information included in a hypothesis is

referred to as the hypothesis status, given in Table 3.5. Note that the same

partition can have different grounding states associated with its nodes and

this would result in two different hypothesis sharing the same partition. All

possible combinations of a user act, a partition and the grounding informa-

tion result in a list of hypotheses over which a distribution is maintained

and updated at each turn. This is the belief state b(ht). Since it would be

intractable to work with all possible hypotheses, the list is pruned to include

only the most probable ones.

3.3.4 Belief update

Updating the belief state depends on four models: the observations model,

the user act model, the user goal model and the dialogue history model, as
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outlined in Section 2.2.6. For explanation purposes it is useful to reproduce

equation Eq. 2.19:

b(sut+1 = s′u, a
u
t+1 = a′u, s

d
t+1 = s′d)

∝ P (ot+1 = o′|aut+1 = a′u)︸ ︷︷ ︸
observation model

P (aut+1 = a′u|s
u
t+1 = s′u, a

m
t = am)︸ ︷︷ ︸

user action model∑

su∈Su

P (sut+1 = s′u|s
u
t = su, a

m
t = am)︸ ︷︷ ︸

user goal model∑

sd∈Sd

P (sdt+1 = s′d|s
u
t+1 = s′u, a

u
t+1 = a′u, s

d
t = sd, a

m
t = am)︸ ︷︷ ︸

dialogue history model∑

au∈Au

b(sut = su, a
u
t = au, s

d
t = sd) (3.1)

where sut is the user goal, aut is the user action, sdt is the dialogue history

and amt is the system action at dialogue turn t.

The user goal model defines how the user goal evolves during the dia-

logue. In the HIS dialogue manager user goals are grouped into partitions.

Due to the assumption that each user goal in the same partition is equally

likely, the user goal model is simplified in such a way that instead of taking

into account every possible goal, it only takes into account different parti-

tions to a certain level of granularity in each particular turn. Therefore in

the HIS dialogue manager, the belief is not maintained on the combination

of a user goal sut , a user action aut and a dialogue history sdt as in b(sut , a
u
t , s

d
t )

in Eq. 3.1, but rather on the combination of a partition pt, a user action

aut and a dialogue history sdt , b(pt, a
u
t , s

d
t ). In this way, the user goal model

becomes

∑

su∈Su

P (sut+1 = s′u|s
u
t = su, a

m
t = am) =

∑

p∈Pt

P (pt+1 = p′|pt = p), (3.2)

where pt+1 is a partition from the current turn, pt is the partition from

the previous turn and Pt is the set of all partitions from the previous turn.

Up to now, the sets of goals was fixed through the dialogue, Su. In the

HIS system this fixed set of goals Su is replaced with a dynamic set of
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partitions Pt that changes for each turn. That allows the update formula to

be simpler since there is no need to sum over all possible goals, but only the

ones characteristic for that turn t. Note that in Eq. 3.2 there is no need to

include the dependency on system action amt , since the system action already

takes part in the creation of the partition set Pt+1 which the partition p′

belongs to.

The user goal model is further simplified by assuming that the user does

not change their mind during the dialogue. In this way, there is no need to

take into account that the transition may happen from any partition in the

previous turn p to one in the current turn p′. On the contrary, if partition

pp represents the partition in the previous turn and the assumption is that

the user goal does not change, but rather becomes more refined with new

information from the user, the partition in the current turn p′ is split from

partition pp. This allows for the approximation

∑

p∈Pt

P (pt+1 = p′|pt = p) = P (pt+1 = p′|pt = pp), (3.3)

where Pt is the set of all partitions in the previous turn and pp ∈ Pt the

partition in the previous turn from which p′ is split.

Eq. 3.1 therefore becomes:

b( pt+1 = p′, aut+1 = a′u, s
d
t+1 = s′d︸ ︷︷ ︸

ht+1 = h′

hypothesis in turn t+ 1

)

∝ P (ot+1 = o′|aut+1 = a′u)︸ ︷︷ ︸
observation model

P (aut+1 = a′u|p
u
t+1 = p′, amt = am)︸ ︷︷ ︸

user action model

P (pt+1 = p′|pt = pp)︸ ︷︷ ︸
user goal model∑

sd∈Sd

P (sdt+1 = s′d|p
u
t+1 = p′u, a

u
t+1 = a′u, s

d
t = sd, a

m
t = am)︸ ︷︷ ︸

dialogue history model∑

au∈Au

b(pt = p, aut = au, s
d
t = sd︸ ︷︷ ︸

ht = h

hypothesis in turn t

), (3.4)

where hypothesis ht is a triple of partition pt, user action aut and dialogue
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history sdt at turn t and it takes values in Ht = Pt × Au × Sd, with h ∈ Ht

and h′ ∈ Ht+1.

The user action model is approximated by the dialogue act type bigram

model and the matching function (k is a normalisation constant):

P (aut+1 = a′u|p
u
t+1 = p′, amt = am)

≈ k · P (T(aut+1) = T(a′u)|T(a
m
t ) = T(am)) ·M(a′u, p

′, am), (3.5)

where T(·) denotes the type of the dialogue act and M(·) indicates whether

or not the user dialogue act a′u matches the partition p′ and system act am,

M(a′u, p
′, am) : Au × Pt+1 × Am → R [106]. The bigram model determines

how probable the dialogue act type is given its preceding dialogue act type in

the dialogue. The matching function is a filter that gives a low probability to

dialogue acts which are inconsistent with the given partition and the system

act and a high probability otherwise.

The observation model P (ot+1|a
u
t ) represents the probability of a partic-

ular observation given the true user act. Assuming that every act is equally

probable and that every observation is equally probable (both P (aut+1) and

P (ot+1) are constant), the observation model becomes:

P (ot+1 = o′|aut+1 = a′u) =
P (aut+1 = a′u|ot+1 = o′)P (ot+1 = o′)

P (aut+1 = a′u)

≈ l · P (aut+1 = a′u|ot+1 = o′), (3.6)

where l is a constant.

The system gets a scored N-best list of possible user acts at turn t+ 1,

Au
t+1 = {ã1u, . . . , ã

N
u } with associated confidence scores {c1, . . . , cN} as an

input from the speech understanding component. This forms the observation

o′ = [(ã1u, c1), . . . , (ã
N
u , cN )]T. Due to the fact that confidence score in the

HIS system is a probability distribution, the following assumption is made

P (aut+1 = a′u|ot+1 = o′) =

{
ci if a′u is aiu ∈ Au

t+1

0 if a′u /∈ Au
t+1

(3.7)

Due to this assumption, when updating the belief in turn t+1 (see Eq 3.4),

there is no need to sum over all possible user dialogue acts Au but only over

the ones that appeared in the N-best list input in the previous step Au
t , since
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the belief states b(pt = p, aut = au, s
d
t = sd) are zero where au /∈ Au

t .

The dialogue history model in the HIS system is fully deterministic. The

dialogue state is described as a vector sd of grounding states ρ ∈ Γ associated

with each node η in a partition p, where Γ is the set of grounding states. The

grounding model finite state machine (see Section 3.3.3) gives new grounding

state ρ′ from the previous grounding state ρ given user action a′u and system

action am. This can be denoted as τ(ρ, am, a′u) = ρ′, where τ is the grounding

state transition function, τ : Γ × Am × Au → Γ. Therefore, the dialogue

history model is approximated as

P (sdt+1 = s′d|p
u
t+1 = p′, aut+1 = a′u, s

d
t = sd, a

m
t = am)

=

{
1 if τ(sd(η), am, a′u) gives s

′
d(η), ∀η ∈ p′

0 otherwise
(3.8)

Due to this approximation, there is no need in Eq. 3.4 to sum over all

possible dialogue histories Sd, but rather only the ones that appeared in

the previous turn Sdt since the belief states b(pt = p, aut = au, s
d
t = sd)

for dialogue histories sd /∈ Sdt is zero. In fact it is only necessary to sum

over dialogue histories sd ∈ Sdt that were associated with partition pp – the

partition in the previous turn from which partition p is split. The reason

for this is that the dialogue history consists of grounding states associated

with each node in the partition. Since the user goal does not change over

time, the dialogue histories for partition p can only evolve from the dialogue

histories associated to the partition pp. Most of the time, this is a one-to-one

mapping, in which case there is only one term in the summation.

3.3.5 Policy representation

Policy representation in POMDP systems is non-trivial since each system

action depends on a complex probability distribution over all hypotheses.

Although grouping user goals into partitions makes it possible to maintain

belief state for large scale problems, due to the size of the state space it

is still prohibitive to define an action for every possible belief state – ev-

ery possible distribution over hypotheses. It is also prohibitive to perform

learning directly. Hence, in order to perform policy optimisation, the state

space must be mapped to a smaller scale summary space. In the HIS system,

this is achieved by heuristically mapping to summary space only a limited
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number of components of the belief state that are considered to be the most

important for learning.

The full cycle of the action-selection process is given in Fig. 3.3. For a

given belief state b the system needs to find an appropriate action am. In

order to do this, it maps the belief state b into a summary state point b̂

for which it proposes a summary action âim. Then an inverse mapping is

performed to obtain the action am in the master space.

Instead of having the complete distribution of the hypotheses, only the

top two probabilities are represented in the summary space, see b̂ in Fig. 3.3.

In addition, the user act type, the partition status and the hypothesis status

from the top hypothesis are included in the summary space. As mentioned

in Section 3.3.3, the partition status denotes how many database entities

there are that match the partition, see Table 3.3. The hypothesis status

is a dialogue history status variable which keeps track of dialogue progress,

see Table 3.5. The user act type is simply the type of the user dialogue

act that is included in the formation of the top hypothesis. In this way

the (complex) belief state is represented by a point in a multidimensional

space where some variables are continuous (the probability of the top two

hypotheses) and some are discrete (the user act type, the partition status

and the hypothesis status). The original POMDP model is thus cast to a

continuous MDP model which can be solved using a grid-based approach

(see Section 2.2.5).

In order to deploy the grid-based approach, a simple distance metric is

defined which is Euclidean on the continuous variables and a weighted sum

of δ functions on the discrete variables:

|b̂i − b̂j | =
2∑

k=1

ωk ·

√
(b̂i(k)− b̂j(k))2 +

5∑

k=3

ωk · δ(b̂i(k), b̂j(k)), (3.9)

where ωk are weights.

This distance metric allows for the summary space to be discretised into

a finite number of grid points. As already mentioned in Section 2.2.5, grid

points are constructed in such a way that the distance between every grid

point is greater than a threshold ν and for every other point in the summary

space there exists a grid point such that the distance between the two is less

than ν. The weights are heuristically set to ensure that the points with

different hypothesis and partition status create a new grid region (ω1 = 1.0,
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ω2 = 0.5, ω3 → ∞, ω4 → ∞, ω5 = 0.5). This will be referred to as the

Euclidean distance metric, thought strictly speaking it is Euclidean only on

the continuous part of the space.

Discretising the summary space into a finite set of grid points allows

discrete MDP algorithms to be used for optimising the policy on the grid

points. Whenever a point in the summary space is visited, either during

policy optimisation or policy execution, it is approximated with its nearest

grid point, denoted as b̂i in Fig. 3.3.

Actions in the summary space refer specifically to the top two hypothe-

ses, and unlike actions in the master space, they are limited to a small finite

set, see Table 3.6. For example, if the system “offers” an entity (summary

action Offer) it is reasonable to mention the entity that matches the most

likely user goal, i.e., the one that matches partition from the most likely

hypothesis.

A system summary space action is denoted as âim in Fig. 3.3. The sys-

tem summary action is then mapped back into a dialogue action by adding

additional information from the corresponding master belief state to give

the required system dialogue act, denoted as aim. It can be seen in Table 3.6

that summary actions require an attribute or attribute-value pairs to form

the system dialogue act. The grounding information is used to determine

these attribute value pairs. For example, if the summary action is Offer,

then all the attribute-value pairs that the user requested are added to form

the system dialogue act. The purpose of this is to assure the user that

the offered entity has the requested properties. In a similar way, summary-

to-master-space mapping rules are heuristically defined for each summary

action.

3.3.6 Overview of HIS dialogue manager operation

At this point it is useful to summarise the HIS dialogue manager’s operation.

The input to the dialogue manager is a list of dialogue acts with associated

confidence scores, ã1u, ã
2
u, . . . , ã

N
u , see Fig. 3.4. The attribute-value pairs from

each of these dialogue acts are used in forming partitions that represent

possible user goals, p1, p2, p3 etc. A user act ãiu from the input is associated

with a partition pi and together with the corresponding grounding states

sid it forms a hypothesis hi. Every such combination produces a list of

hypotheses over which the distribution is maintained. This distribution
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Summary action Interpretation and an example master action

Greet System greets the user
hello()

Request System requests an attribute value
request(area)

Confirm System confirms attribute values
confirm(type=restaurant, pricerange=cheap)

ConfReq System implicitly confirms attribute values and
requests an attribute value
confreq(type=restaurant, pricerange=cheap, area)

Select System asks the user to select between two attribute
values
select(pricerange=expensive, pricerange=cheap)

Offer System offers an entity
inform(name=Char Sue, type=restaurant,
pricerange=cheap)

OfferAlt System offers an entity that has not been offered
before
inform(name=Peking, type=restaurant,
pricerange=cheap)

QueryMore System asks the user if there is anything else they
request
reqmore()

SysRepeat System repeats the last action
inform(name=Peking, type=restaurant,
pricerange=cheap)

UserRepeat System asks the user to repeat the request
repeat()

Bye System says bye
bye()

Table 3.6: HIS summary actions.

represent the belief state, b(h). The belief state b(h) is then mapped to a

point in the summary space, b̂ for which the policy provides a summary

action, âm. This summary action is finally mapped to a master action, i.e.,

the system dialogue act, by heuristically adding the grounding information

from the master space.

When interacting with the user simulator, the system dialogue act is

passed directly to the user simulator. In interaction with a human user, the

dialogue act is passed to the natural language generator, which produces
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text that is then synthesised into speech.
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Figure 3.4: Overview of the dialogue process.

3.4 Training and evaluation with a simulated user

This section focuses on the problem of policy optimisation using a summary

space. One approach to building a dialogue policy is to simply have an

expert define it using rules for each part of the summary space to provide

appropriate summary actions. For example, when the probability of the top

hypothesis is smaller than a certain threshold, the dialogue manager should

ask for a confirmation from the user in order to become more certain about

the user goal. This is the Confirm summary action. In the case where the

probability is very high, the system should respond to the user request and

in the tourist infraction domain this normally results in suggesting an entity

to the user that matches the user goal as represented by the top hypothesis.

This is the Offer summary action. In a similar way, such rules can be devised

for every single part of the summary space. Similar hand-crafted policies

were previously deployed in other MDP and POMDP systems and provided

a strong baseline [73, 90]. In order to reduce the development cost and to

make the process automatic, reinforcement learning is deployed to find an
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optimal policy. In the HIS system, this is performed by interacting with a

simulated user.

3.4.1 Policy optimisation

Policy optimisation is performed in the discrete summary space using the

Monte Carlo control algorithm (Algorithm 2, see Section 2.2.2). The system

maintains a set of grid points in the summary space {b̂i}. At each turn in

training, the nearest grid point b̂i to the current summary point b̂ is located

using a distance measure. If the distance is greater than some threshold, b̂

is added to the set of stored grid points. The sequence of points b̂i traversed

in each dialogue is stored in a list. Associated with each b̂i is a function

Q(b̂i, âm) – the expected total reward obtained by choosing summary action

âm from summary state b̂i. At the end of each dialogue, the total reward is

calculated and added to an accumulator for each point in the list, discounted

by γ at each step and the Q values are updated according to the accumulated

rewards. The whole process is then repeated until the policy stabilises.

In the experiments that will be presented in Section 3.4.3, the explo-

ration factor, ǫ, was fixed at 0.1. This means that the system was taking

a random action 10% of the time during learning. An adequate balance

between exploration and exploitation is a major problem in reinforcement

learning [32]. Although the choice of ǫ is heuristic, setting the exploration

factor to 10% tends to give a faster convergence for stochastic systems then

setting it to a smaller value [32]. The discount factor is normally used for

non-episodic tasks. However, in this case discount factor γ was fixed at 0.95

in order to favour shorter dialogues.

The reward function is defined in the following way. A positive reward of

+20 will be given for successful completion of the user request deducted for

the number of dialogue turns taken. Successful completion means that the

system has provided the user an entity that matches the user’s constraints

and also provided all the information that the user requested about that

particular entity. Thus, successfully completed short dialogues are favoured.

Although simplistic, a similar reward function was found to be effective in

other studies [10, 77, 90]. Sometimes a positive reward of +100 will be given

for successful dialogue completion. This will be the case when the system

needs to negotiate with the user to be able to provide an entity. For example,

the user may change their mind. In such cases the dialogues may be longer.
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If this is the case it will be clearly stated in the experiments, otherwise the

default setting of +20 will be used.

3.4.2 User simulator and the error model

The agenda-based user simulator is used throughout this thesis for training

and evaluation of the dialogue manager. In this section, its description is

given based on the detailed descriptions in [90, 94, 107].

In the agenda-based user simulator, the user state is factored into an

agenda and a goal. The goal ensures that the user simulator exhibits consis-

tent, goal-directed behaviour. It has a form-like structure. At the start of

each dialogue, it is randomly initialised with constraints for attribute-value

pairs such as type=restaurant, food=Chinese, and the requests of attributes

such as name, address, phone.

The role of the agenda is to elicit the dialogue acts that are needed for

the user simulator to fulfil the goal. It stores the dialogue acts in a stack-like

structure. The stack enables a temporarily storage of actions when another

action of higher priority needs to be issued first. This allows the simulator

to refer to previous dialogue turns at a later point.

Both the goal and the agenda are dynamically updated throughout the

dialogue. These updates are controlled by decision points. Decision points

can be deterministic or stochastic. The deterministic decision points pre-

serve rational behaviour, while stochastic decision points enable variability

in the simulated user behaviour. The stochastic decision points are con-

trolled with parameterised probability distributions. In this way, they en-

able a wide spread of realistic dialogues to be generated. In addition, the

simulator will relax its constraints when its initial goal cannot be satisfied.

This allows the dialogue manager to learn negotiation-type dialogues where

only an approximate solution to the user’s goal exists. The list of param-

eters, their associated distribution (G for geometric and B for binomial)

and their interpretation is given in Table 3.7. It is important to note that

the stochastic decision points are nested in the flow-chart of the simula-

tor control and the probabilities are conditional on this. For example, the

simulator does not make a decision of removing a constraint from the goal

(ConstraintRelax) with a probability of 0.667 at every dialogue turn. This

decision point is only reached at particular stages of the dialogue.

The agenda-based simulated user also incorporates a patience level. In
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3. A real-world POMDP-based dialogue manager

the set-up used here, the user ends the dialogue once the system repeats the

same action three times in a row.

Parameter Dist Val. Interpretation

InformCombination G 0.600 Add a constraint to the goal
AddAttributeToReq G 0.333 Add an attribute from the goal

requests
YesAfterReqmore B 0.250 Say yes without giving more info
AffirmWithAgdItem B 0.050 When affirming provide more info
Greeting B 0.500 Respond to greeting
ConstraintRelax B 0.667 Remove a constraint from the

goal
TellAboutChange B 0.500 Inform about a goal change
ByeOrStartOver B 0.333 End the dialogue or start again
DealWithPending B 0.500 Deal with pending items on the

agenda
AddEntityName B 0.050 Provide entity name when

requesting
NoAttrWithDontcare B 0.800 Leave out attributes if their

values do not matter
InformToConfirm B 0.050 Change informs to confirms on

agenda
ReqAltsAfterEntRec1 B 0.143 Request alternative
ReqAltsAfterEntRec2 B 0.143 Request alternative and change

goal
RequestResponce1 B 0.200 Repeat a random constraint
RequestResponce2 B 0.200 Make up a new constraint
OverruleCorrection B 0.100 Do not correct a

misunderstanding
CorrectingAct1 B 0.450 Correct a misunderstanding with

negate
CorrectingAct2 B 0.400 Correct a misunderstanding with

deny
ThankAck1 B 0.100 Say thank you
ThankAck2 B 0.100 Say ok

Table 3.7: Parameter setting for the agenda-based simulated user.

The agenda-based user simulator was successfully used previously to

train both an MDP and a POMDP dialogue manager [77, 90]. It was also

evaluated with human judges in the following way. A corpus of simulated di-

alogues was generated. Since the simulated user interacts with the dialogue

manager on the semantic level, both the system’s and the user’s actions
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3.4 Training and evaluation with a simulated user

were given an interpretation in natural language. The judges were asked to

rate the naturalness of these dialogues as well as the dialogues generated

with humans. The results show that they were not able to notice any dif-

ference [90]. This suggests that the agenda-based user simulator generates

sufficiently complex user behaviour to be used for dialogue manager training

and evaluation.

An important component of simulation is the error model. Confusions

can be added to the user simulator output before it is passed to the dialogue

manager so that the dialogue manager is not aware of the true dialogue

act that the user simulator wanted to communicate but only receives a

noisy version. This matches real situations where the input received from

the speech understanding unit is corrupted with noise. The error model

generates an N-best list of noisy dialogue acts. There are two error models

that will be considered in this thesis.

The uniform error model for a fixed error rate e confuses each dialogue

action in the N-best list with probability e. Otherwise, the dialogue act in

the N-best list it is identical to the true one. Given that a dialogue act is

confused, then there is a fixed set of rules of how each of its concepts (the

type and the attribute-value pairs) are confused. The confidence score is

based on how many times the same dialogue act appears in the N-best list.

The Dirichlet error model operates differently. It first produces the con-

fidence scores for a fixed confusion rate e and a fixed length N of the N-best

list. Then, sampling from the multinomial distribution determined by these

generated confidence scores gives the position in the list where the true act

is. Other dialogue acts in the N-best list are confused in the same way as

for the uniform error model. More details can be found in [73].

Although the agenda-based user simulator and the error model described

here are not directly trained on data, they have been sufficiently tested

to confirm that they provide enough complexity to train a dialogue man-

ager [73, 90]. The agenda-based user simulator with configuration specified

above will be used through the thesis unless otherwise specified. For most

experiments the uniform error model gives enough complexity and is part of

the default configuration. Where necessary, the Dirichlet error model will

be used and this will be made explicit.
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3. A real-world POMDP-based dialogue manager

3.4.3 Training in an incremental noise setting

When training a system to operate robustly in noisy conditions, a variety

of strategies are possible. For example, the system can be trained only

on noise-free interactions, it can be trained on increasing levels of noise or

it can be trained on a high noise level from the outset. A related issue

concerns the generation of grid points and the number of training iterations

to perform. For example, allowing a very large number of points leads to

poor performance as it is difficult to ensure that each point is visited enough

times to acquire an adequate estimate. Conversely, having too few points

leads to poor performance because different belief states are approximated

with the same grid point.

The training schedule for the noise-free approach is self-explanatory. The

schedule for the incremental set-up is as follows. In order to make sure that

every part of the space is visited whilst minimising the number of iterations

needed for training, the training starts in a noise-free environment using a

small number of grid points and continues until the performance of the policy

levels off. The resulting policy is then taken as an initial policy for the next

stage where the noise level is increased, the number of grid points is increased

and the number of iterations is increased. This process is repeated until the

highest noise level is reached. This approach is motivated by the observation

that a key factor in effective reinforcement learning is the balance between

exploration and exploitation. In POMDP policy optimisation, which uses

dynamically allocated grid points, maintaining this balance is crucial. Also,

obtaining a good policy for a noise-free environment is typically faster than

for a noisy environment. Therefore, the approach is to essentially adapt the

policy obtained in a noise-free environment to different noise levels rather

than just training it on a random noise level.

The noise introduced by the simulator provides an implicit mechanism

for exploring the space. Each time the noise is increased, different areas

of the state space will be visited and hence the number of available grid

points must also be increased. At the same time, the number of iterations

must be increased to ensure that all points are visited a sufficient number

of times. In practice, around 750 to 1000 grid points proved to be sufficient

and the total number of simulated dialogues needed for training was around

100, 000.

A second issue when training concerns the length of the N-best input. A
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limiting factor here is that the computation required for N-best training is

significantly increased since the rate of partition generation in the HIS model

increases exponentially with N. Therefore only 2-best lists were considered

when training and testing in noisy conditions. Fig. 3.5 and 3.6 show the

average dialogue success rates and rewards for 3 different policies: a hand-

crafted policy (hdc), a policy trained on noise-free conditions (noise free)

and a policy trained using the incremental scheme described above (increm).

Each policy was tested using 2-best output from the simulator across a range

of error rates.
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Figure 3.5: Average simulated dialogue success rate as a function of error
rate for a hand-crafted (hdc), noise-free and incrementally trained (increm)
policy.

As can be seen in Fig. 3.5 and 3.6, both the trained policies improve sig-

nificantly on the hand-crafted policies. Furthermore, although the average

rewards are all broadly similar, the success rate of the incrementally trained

policy is significantly better at higher error rates.

3.5 Evaluation via a user trial in noisy conditions

It is important to check whether these benefits obtained in simulations also

translate to improvements with human users. As a result, the HIS dialogue

manager with a trained POMDP policy was evaluated in a user trial to
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Figure 3.6: Average simulated dialogue reward as a function of error rate for
a hand-crafted (hdc), noise-free and incrementally trained (increm) policy.

compare it to an MDP dialogue manager on the same task in noisy con-

ditions. Noise was artificially generated and added to the user’s speech in

order to induce speech understanding errors and then measure how different

approaches to statistical dialogue management deal with erroneous input.

The set-up consisted of an ATK-based speech recogniser, a Phoenix-based

semantic parser [108], a diphone based speech synthesiser [109] and the di-

alogue manager described in Section 3.3.

The HIS-POMDP policy (HIS-TRA) that was incrementally trained on

the simulated user using 2-best lists was tested in a user trial together with

a hand-crafted HIS-POMDP policy (HIS-HDC). In addition, an MDP-based

dialogue manager [90] was tested. Since considerable effort had been put in

optimising this system, it served as a strong baseline for comparison. Again,

both a trained policy (MDP-TRA) and a hand-crafted policy (MDP-HDC)

were tested.

3.5.1 Trial set-up

For the user trial, 36 subjects were recruited (all British native speakers)

that never before had interacted with any of the systems that were being

evaluated. Each subject was asked to imagine themselves to be a tourist
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in a fictitious town called Jasonville and to try to find particular hotels,

bars, or restaurants in that town. Each subject was asked to complete a set

of predefined tasks where each task involved finding the name of a venue

satisfying a set of constraints such as food type is Chinese, price-range is

cheap, etc., and getting the value of one or more additional attributes of

that venue such as the address or the phone number.

The noise was artificially generated and mixed with the microphone sig-

nal. In addition it was fed into the subject’s headphones so that they were

aware of the noisy conditions. The noise levels correspond to signal to noise

ratios (SNRs) of 35.3 dB (low noise), 10.2 dB (medium noise), or 3.3 dB

(high noise).

3.5.2 Results

In Table 3.8, general statistics of the corpus resulting from the trial are given.

The semantic error rate is based on substitutions, insertions and deletions

errors on semantic items. When tested after the trial on the transcribed user

utterances, the semantic error rate was 4.1% whereas the semantic error rate

on the ASR input was 25.2%. This means that 84% of the semantic error

rate was due to errors in the ASR.

Word error rate 32.9
Semantic error rate 25.2
Semantic error rate transcriptions 4.1

Table 3.8: General corpus statistics.

Tables 3.9 and 3.10 present average success rates and average reward,

comparing the two HIS dialogue managers with the two MDP baseline sys-

tems. For the success rates, the standard deviation (std. dev.) is also given,

assuming a binomial distribution. The success rate is the percentage of suc-

cessfully completed dialogues. A task is considered to be fully completed

when the user is able to find the venue he is looking for and gets all the

additional information he asked for; if the task has no solution and the sys-

tem indicates to the user no venue could be found, this also counts as full

completion. A task is considered to be partially completed whenever the

correct venue was been given, regardless of whether the further information

was provided. The results on partial completion are given in Table 3.9, and

the results on full completion in Table 3.10. To mirror the reward func-
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tion used in training, the performance for each dialogue is computed by

assigning a reward of 20 points for full completion and subtracting 1 point

for the number of turns up until a successful recommendation (i.e., partial

completion).

Partial task completion statistics

System Success (std. dev.) #turns Reward

MDP-HDC 68.52 (4.83) 4.80 8.91
MDP-TRA 70.37 (4.75) 4.75 9.32
HIS-HDC 74.07 (4.55) 7.04 7.78
HIS-TRA 84.26 (3.78) 4.63 12.22

Table 3.9: Success rates and performance results on partial completion.

Full task completion statistics

System Success (std. dev.) #turns Reward

MDP-HDC 64.81 (4.96) 5.86 7.10
MDP-TRA 65.74 (4.93) 6.18 6.97
HIS-HDC 63.89 (4.99) 8.57 4.20
HIS-TRA 78.70 (4.25) 6.36 9.38

Table 3.10: Success rates and performance results on full completion.

The results show that the trained HIS dialogue manager significantly

outperforms both MDP based dialogue managers. For success rate on partial

completion, both HIS systems perform better than the MDP systems.

It is difficult to directly compare these results with the evaluation on

the user simulator (Figs. 3.5 and 3.6), since the error rate that the uniform

error model produces does not directly relate to the semantic error rate (Sec-

tion 3.4.2). However, calculating the semantic error rate on the simulated

data showed that the semantic error rate of 0.25 relates to the error rate

of 0.40 in the uniform error model. When comparing the results form Ta-

ble 3.4.2 with the evaluation on the simulated user (Figs. 3.5 and 3.6) for

0.40 error rate, it can be seen that the average success of the trained HIS

policy and the average reward of the hand-crafted HIS policy are similar to

the real-user evaluations. However, the average reward of the trained policy

is much higher and the average success of the hand-crafted policy is lower

than when tested with the simulated user. This suggests that the simulated

user is able to accurately predict the rankings of the systems but not the

absolute performance.
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3.5.3 Subjective results

In the user trial, the subjects were also asked for a subjective judgement of

the systems. After completing each task, the subjects were asked whether

they had found the information they were looking for (yes/no). They were

also asked to give a score on a scale from 1 to 5 (best) on how natu-

ral/intuitive they thought the dialogue was. Table 3.11 shows the results for

the 4 systems used. The performance of the HIS systems is similar to the

MDP systems, with a slightly higher success rate for the trained one and a

slightly lower score for the hand-crafted one.

System Succ. Rate (std. dev.) Score

MDP-HDC 78 (4.30) 3.52
MDP-TRA 78 (4.30) 3.42
HIS-HDC 71 (4.72) 3.05
HIS-TRA 83 (3.90) 3.41

Table 3.11: Subjective performance results from the user trial.

The discrepancy between the objective and subjective user results (Ta-

bles 3.10 and 3.11) demonstrate the limitations of controlled tests. Users’

average perception that the systems were more successful than the objective

measure may be ascribed to the users not checking whether the entity that

the system offer exactly matches the task specification. It seems that they

perceived HIS-TRA to be more successful than the MDP systems, which is

in line with with the objective results. However, more dialogues are needed

to establish statistical significance. Their average scores on naturalness are

not very informative, since the frame of reference varies sharply across dif-

ferent subjects. This altogether makes it very difficult to use these results

to establish a valid comparison, and it points out the need to evaluate the

system with real users in a real situation performing a much larger number

of dialogues.

3.6 Summary

This chapter has given an overview of the HIS system and a detailed descrip-

tion of the HIS dialogue manager. The process of policy optimisation with a

simulated user in an incremental noise setting was explained and evaluation

results from a trial with human users were given.
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The results from the user trial show the superiority of the POMDP ap-

proach compared to the MDP approach for dialogue modelling, but they

also point to some deficiencies of the HIS system. Although the original

HIS system is able to deal with a large limited-domain dialogue task, in

order to achieve tractability in training, the length of the N-best list is re-

stricted to 2. This is mainly due to the exponential growth of the number

of partitions in high error rates with large N-best lists and the lack of an ef-

fective partition pruning mechanism. This is a considerable limitation since

large N-best lists provide more information about the possible user request.

In addition, the exponential partition growth also places a constraint on

the supported dialogue length, which is not desirable in real-world systems.

Moreover, the original state representation does not support more complex

dialogues, such as dialogues with user requests containing logical combina-

tions of constraints. Also, although the system was trained to deal with

negotiation-type dialogues, e.g., a dialogue in which the user asks for an

alternative entity from the offered one or the user changes their mind, the

performance on these dialogues is typically much worse then when the user

goal stays constant. This is due to the fact that the belief update formula

Eq. 2.19 in Section 3.3.4 is based on the assumption that the user goal does

not change.

Another issue is policy optimisation. There are clear problems in opti-

mising the policy using a summary space, which is drastically downscaled,

as well as in optimising it via interaction with a simulated user. Downscal-

ing the space inevitably leads to problems in mapping back to the master

space. Also, enlarging the state space increases the number of iterations

needed for training. This is undesirable because the policy should ideally

be trained on real users rather than a simulated user. Therefore, a faster

policy optimisation method is needed.

These issues will be addressed in the following chapters. Chapter 4 ex-

plains how the partition representation can be improved to deal effectively

with the exponential growth of partitions in order to support large N-best

lists inputs from the speech understanding unit, dialogue domains with com-

plex ontologies and dialogues with a large number of dialogue turns. The

problem of policy optimisation will be addressed in two ways. Firstly, in

Chapter 5 the problem of the inverse mapping will be examined via a back-

off mechanism that guarantees the optimal back-off action selection. Sec-
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ondly, a policy optimisation method where the Q-function is modelled as a

Gaussian process will be investigated. Chapter 6 introduces this method and

examines its potential to speed up the policy optimisation process. Chap-

ter 7 then further investigates how this model for the Q-function can be

used for adaptation to different user profiles.
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Chapter 4

Extended state

representation

4.1 Introduction

In order to exploit the HIS system’s capability to model dependencies be-

tween different attribute-value pairs (which is in contrast with the BUDS

system, for example), the standard model is extended to include an ex-

plicit representation of complements. Similar to [72, 110], the partitions are

formed using not only the attribute value pairs from the user input, but

also their complements. In this way, the coverage of potential user goals is

improved. This is particularly useful for more complex dialogue structures,

where the user goal evolves and changes during the dialogue, influenced

by the system’s responses. Moreover, the notion of complements allows a

variant of first order logic to be incorporated, i.e., the user can use nega-

tions, conjunctions and disjunctions to communicate with the system and

the system can use quantifiers to express the result of the user query.

Since the uncertainty in the user input is dealt with by taking into ac-

count all partitions that can be referred to by the user input, the number

of possible partitions grows exponentially as the dialogue progresses. This

results in computational difficulties, especially in domains where relatively

long dialogues are expected. It also limits the length of the N-best list of

hypothesised user dialogue acts input to the dialogue manager, which is

crucial for robust belief monitoring in noisy conditions [102]. This chapter

shows how the explicit notion of complements allows an efficient pruning
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technique to be implemented which enables arbitrarily long N-best lists of

input acts and arbitrarily long dialogues to be supported, while preserving

the most probable user goals. This new representation resolves many of the

computational problems found in the shared node representation used in the

original HIS system (outlined in Section 3.3.3) and at the same time extends

its expressive power.

4.1.1 Application domain

The extensions to the state representation that are presented in this chapter

have made it possible to apply the HIS formalism to a much larger real-world

dialogue task: tourist information for Cambridge. In this system, which

is called CamInfo, the user can ask for a restaurant, hotel, bar, museum

or another tourist attraction. The database consists of approximately 500

entities, each of which has up to 10 attributes that the user can query. The

full description of the CamInfo domain ontology is given in Appendix C.1.

4.1.2 Dialogue tasks requiring negotiation

Including complements in the dialogue representation allows the dialogue

manager to provide better support for dialogue tasks requiring negotiations.

As noted in Section 3.4.2, negotiation-type dialogues are dialogues where the

user does not have a firm goal, but their goal is influenced by the system’s

response and can potentially change over the course of a dialogue. For

example, every time the system offers information, the user can change

their mind and ask for something else. Another example is when the system

informs the user that there is no matching entity in the database for the

user’s request. In this case, the user can relax the constraints and try to

find something else. Normally, in task-based dialogue systems such scenarios

are not supported. The Hidden Information State is also based on the idea

that the user goal does not change. Moreover, this constraint is not only

incorporated in the belief update as mentioned in Section 3.3.4, but more

importantly in the state representation.

For example, consider the attribute value pairs name=Char Sue, type=restaurant

and pricerange=cheap. In the representation without complements this would

result in four partitions: one that contains name=Char Sue, type=restaurant

and pricerange=cheap (partition 1), another that contains type=restaurant
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and pricerange=cheap (partition 2), one with just type=restaurant (partition

3) and one with just pricerange=cheap (partition 4). Thus, if the system

makes an offer inform(name=Char Sue,type=restaurant,pricerange=cheap), this

matches partition 1 most closely. However, if the user asks for an alterna-

tive, the user goal could be represented by any of the partitions 2, 3, and

4 despite the fact that these could all yield the same entity Char Sue from

the database. Preventing this to ensure that a genuine alternative is offered

to the user is difficult and requires ad hoc hand-crafting. Hence, although

sharing nodes among partitions allows for a vast number of partitions to be

efficiently represented, it is difficult to identify and remove partitions that

are represented in such a way. Including information about complements

has the potential to alleviate this problem.

4.2 Explicit representation of complements

As explained in Section 3.3.3, a partition in the standard HIS model repre-

sents a realisation of the ontology tree with a unique value in each atomic,

lexical or class node. In the extended representation of dialogue state, a

partition retains unique values for class and lexical nodes, for example type,

area or food. However, atomic nodes are represented as a set of boolean indi-

cators for each possible value from the ontology. For example, “expensive=⊥

moderate=⊤ cheap=⊤”, represents one atomic node where ⊤ and ⊥ are log-

ical true and false and the example matches user goals with moderate and

cheap price range but not expensive. This allows a wider coverage of possible

user goals. However, a potential drawback of this set representation is the

need to enumerate every value that an attribute can take. This can be a

problem for domains that have classes with high cardinality. For example, if

one were building an automated telephone dialler, an attribute such as name

could take tens of thousands of values. An alternative and more compact

approach is to represent atomic nodes as a disjunction of the values which

are true or a conjunction of the negation of the values which are false. In

this way, the same expressibility is retained without the need to explicitly

enumerate every possible value that an atomic node can take. For this pur-

pose, standard logic notation is used where ∨ represents “or”, ∧ represents

“and” and ¬ represents “not”. An example of different representations of

the same atomic node is given in Table 4.1.
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Representation Atomic node for Lexical node food

Set Chinese English Indian Italian Japanese French Thai
⊤ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥

Disjunctions Chinese ∨ Indian
Conjunctions ¬English ∧ ¬Italian ∧ ¬Japanese ∧ ¬French ∧ ¬Thai

Table 4.1: Different representations of the same atomic node in a partition.

The extended representation of atomic nodes allows for an extension in

both the syntax and semantics of attribute-value pairs. The notation at-

tribute!=value is introduced, meaning attribute can be anything but value.

For example, pricerange!=expensive matches any atomic node where expen-

sive=⊥ in the set representation. In the representation with conjunctions,

it matches any atomic node that contains ¬expensive. In the representa-

tion with disjunctions, it matches any atomic node that does not contain

expensive.

4.3 Partitioning process

In contrast to the original partitioning formulation where partitions have

shared nodes, in the extended representation the partitions are autonomous

with a parent-child relationship which keeps track of the order they are

created. Formally, partitioning is the process of applying an attribute-value

pair α = β to a partition p that contains node α and creating its child

partition c. In the ontology, α is either a class or a lexical node and β is

an atomic node. In the partition p, node α has a child atomic node η that

has all possible values that attribute α can take. During the partitioning

process, the value β in the atomic node η is set to false and the partition c

is a copy of p in which β of the corresponding node is set to true.

In order to apply the attribute-value pair α = β to an existing set of

partitions, one must first ensure that there is a partition that contains node

α. For attribute α, the list of superiors is defined as all attribute-value pairs

αi = βi where αi are class nodes on the path from the node α to the root

of the ontology tree, and βi are the values of their child atomic nodes that

enable the attribute expansion leading to the occurrence of α in the tree.

For example, for attribute-value pair food=Italian the list of superiors is

type=restaurant, entity=venue (see Table 3.2 in Section 3.3.2). The ontology

automatically generates this list for each attribute α, so that they can be
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applied prior to applying α = β. In this way, one can ensure that there is a

partition with node α before α = β is applied.1

The partitioning process starts by applying the list of attribute-value

pairs from the N-best user input to the initial partition, which is just the

root of the ontology tree. The process is then recursively repeated. After the

process, an ordered tree of partitions is created, where the order indicates

when each partition was created. Attribute-value pairs from the system act

are also applied during this partitioning process to ensure that the belief

state includes attributes which have been introduced by the system as well

as by the user.

It is important to note that this process guarantees that all created

partitions are unique. This is achieved by checking whether a partition

contains node α with child node η where β set to false before α = β is

applied to that partition. If it does contain β set to false, then α = β must

have already been used and should not be applied again to that partition.

A step-by-step example of the partitioning process is given in Figs. 4.1-

4.2. The final tree of partitions represents the partitions that are cre-

ated from the following attribute-value pairs: entity=venue, type=restaurant,

area=central, food=Italian and pricerange=cheap. The ontology from Table

3.2 is used to determine the valid combinations. Therefore, there is no

combination that involves type!=restaurant and food=Italian, since the lexi-

cal node food is specific to class node type in which the atomic child value

restaurant is set to true.

4.4 Logical expressions for negotiation-type dia-

logues

The explicit representation of complements in partitions improves the model

in a number of ways.

Firstly, it makes the error recovery process much simpler. For example,

if attribute-value pair α = β occurred in the N-best user input due to a

recognition error, and it turns out later in the dialogue that the user does

not want β, then the user modelling component will automatically increase

the probability of the partition that contains ¬β. In this way, even if the

1This mechanism is essential for dialogues where the user takes the initiative. For
example, System:“How may I help you?”, User:“I want some Italian food”.
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Figure 4.1: Step-by-step partitioning process.
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4.4 Logical expressions for negotiation-type dialogues

Figure 4.2: Step-by-step partitioning process (cont.).
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4. Extended state representation

system does not know exactly what the user wants for attribute α, the

knowledge that the user does not want β is explicitly represented and the

true user goal will be in the partition that has ¬β.

Secondly, this representation is particularly useful when the user goal

evolves and changes during the dialogue. For example, if the user wants a

Chinese restaurant in the centre, the system may offer “Charlie Chan is a

Chinese restaurant in the centre”, which is represented at the dialogue act

level by inform(name=Charlie Chan, type=restaurant, food=Chinese, area=central).

When the system makes such an offer, the partitioning results in some parti-

tions containing name=Charlie Chan and others containing name!=Charlie Chan.

In a real dialogue, a user might want to have more options and may ask “Do

you have anything else?’, corresponding to the dialogue act reqalts(). Based

on this, the user action model will increase the probability of partitions

which have name!=Charlie Chan and decrease the probability of partitions

that have name=Charlie Chan.

4.4.1 Quantifiers in the system’s response

Using the notion of complements, the system can provide more accurate re-

sponses to the user. Referring back to the example from the previous section,

if the user wanted something other than Charlie Chan’s, it may turn out

that the partition with name!=Charlie Chan, type=restaurant, food=Chinese

and area=central does not have any matching entries in the database. In

that case, the system may respond with inform(name=none, type=restaurant,

food=Chinese, area=central, name!=Charlie Chan), meaning “There is no

restaurant that serves Chinese food and is in the centre and isn’t Char-

lie Chan”, or in a more natural form “Charlie Chan is the only Chinese

restaurant in the centre”. An example of a Cambridge tourist information

dialogue that utilises such expressions is given in Table 4.2.

During the course of a dialogue with a high rate of speech recognition

errors, the system might not know what the user wants, but it might be con-

fident about what the user does not want. Coming back to the previous ex-

ample, the speech recogniser might output “No, I don’t want the central area,

I want...” corresponding to deny(area=central) or inform(area!=central), but

the actual value for the attribute area might not be recognised. Then, after

applying the user action model, the partition containing name!=Charlie Chan,

type=restaurant, food=Chinese and area!=central might end up having the
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4.4 Logical expressions for negotiation-type dialogues

System hello()
User inform(=hospital)
System inform(name=“Addenbrooke’s Hospital”, type=amenity,

amtype=hospital)
User request(area)
System inform(name=“Addenbrooke’s Hospital”, area=addenbrookes)
User inform(area!=addenbrookes)
System inform(name=none, type=amenity, amtype=hospital,

name!=“Addenbrooke’s Hospital”)
User request(addr)
System inform(name=“Addenbrooke’s Hospital”,

addr=“Cambridge University Hospitals NHS Foundation Trust, Hills
Road”)

User bye()

Table 4.2: Dialogue with negations in system’s response.

highest probability. If such a partition does not have any matching entries

in the database, the system may inform the user about it rather than trying

to find out the exact value of attribute area that the user wants. The result-

ing system dialogue act would then be inform(name=none, type=restaurant,

food=Chinese, area!=central), meaning “There is no restaurant that serves

Chinese food and is not in the central area”, or alternatively “All Chinese

restaurants are in the centre”.

These two examples demonstrate the capability that the explicit repre-

sentation of complements provides for expressing existential and universal

quantifiers in the system’s response. This can make the dialogue more effi-

cient as there is no need for the system to try to resolve every single con-

straint that the user might have, since knowing just what the user does not

want might be sufficient to provide an acceptable response.

4.4.2 Disjunctions and conjunctions in the user’s request

It was mentioned previously that atomic nodes in partitions can be repre-

sented in terms of conjunctions or disjunctions of values in partitions. So far,

only the case when the user has one specific value for each attribute in mind

was considered, and any cases of multiple values in partitions come from

confusions caused by recognition errors. However, this representation also

allows a richer expression of the user’s constraints. Consider the example

from Fig. 4.1-4.2 where instead of Italian the user asks for an Italian or In-

dian restaurant, inform(type=restaurant, area=central, food=Italian∨Indian,
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4. Extended state representation

Figure 4.3: Representing disjunctions in a tree of partitions.

pricerange=cheap). Partitions can directly represent this, see Fig. 4.3 where

partition 1.1.1.1.1.1. matches the user request. Note that in this case it is

more effective to use the representation in terms of disjunctions and con-

junctions instead of the set representation.

An example of a Cambridge tourist information dialogue where the user

makes use of disjunctions is given in Table 4.3. Since every entity has only

one value for each attribute, for example a hotel can only have a certain num-

ber of stars, conjunctions such as food=Italian∧Indian are not be applicable.

However, conjunctions in terms of negations are possible and effectively rep-

resent disjunctions of negated values; food!=Italian ∧ food!=Indian or alter-

natively food!=Italian∨Indian. In an example similar to the one before, if the

user asked for any restaurant but Italian or Indian, inform(type=restaurant,

area=central, food!=Italian∨Indian, pricerange=cheap), the resulting parti-

tion tree would be the same as in Fig. 4.3 except that in this case the true
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System hello()
User inform(=restaurant, food=Thai ∨ Indian, pricerange=cheap))
System inform(name=“The Rice Boat”, type=placetoeat,

eattype=restaurant, pricerange=cheap, food=Indian)
User reqalts(food=Thai)
System inform(name=none, type=placetoeat, pricerange=cheap, food=Thai)
User request(name=“The Rice Boat”, addr)
System inform(name=“The Rice Boat”, addr=“37 Newnham Road”)
User bye()

Table 4.3: Partitions with disjunctions and conjunctions.

user act matches partition 1.1.1.1.2. There an example of a Cambridge

tourist information dialogue that makes use of conjunctions in Table 4.4.

System hello()
User inform(=hotel, stars!=“4”,stars!=“5”)
System inform(name=“Express by Holiday Inn Cambridge”,

type=placetostay, staytype=hotel,stars=“2”)
User reqalts()
System inform(name=“Royal Cambridge Hotel”, type=placetostay,

staytype=hotel,stars=“3”)
User request(area)
System inform(name=“Royal Cambridge Hotel”, area=riverside)
User bye()

Table 4.4: Dialogue with conjunctions in the user’s request.

4.5 Expressive power of the extended representa-

tion

Including the complements in the representation allows attribute-value pairs

that contain negations such as α = ¬β to be a part of the user goal. In

addition, it allows disjunctions of values for a particular attribute: α = β1∨

. . . ∨ βk to be represented. Conjunctions, however, can only be represented

as α = ¬β1 ∧ . . . ∧ α = ¬βn, which is equivalent to negation of disjunctions

α = ¬(β1 ∨ . . . ∨ βn). In order to represent arbitrary conjunctions of values

for an attribute, α = β1 ∧ . . . ∧ β2, a further extension is needed. Consider

the set representation of the atomic node in Table 4.1. If the set of values

were extended to the power set of values, then all possible conjunctions could

be represented. This would drastically increase the memory requirements

needed for the storing of partitions. Instead of the set representation for the
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atomic nodes, a better choice would therefore be to use the representation

in terms of conjunctions and disjunctions (as in Fig. 4.3).

The partition representation proposed here implicitly supports conjunc-

tions between different attribute-value pairs, (α1 = β1) ∧ . . . ∧ (αk = βk).

However, disjunctions of different attribute-values, (α1 = β1) ∨ . . . ∨ (αk =

βk), cannot be represented in the same partition. The only way to represent

this in the proposed partition representation is to have a separate parti-

tion for each conjunct. However, that is not desirable since each partition

represents one goal rather than parts of it. An alternative way to support

the representation of disjunctions of different attribute-values in a user goal

would be to maintain the distribution on the power set of partitions instead

of the set of partitions. While this would allow the user request to be model

any form of first order logic, it dramatically increases the computational

complexity.

Finally, it is important to note the extent to which the representation of

the user goal adopts a closed-world assumption. Under the closed-world as-

sumption, if something is not known to be true it is assumed to be false [111].

In the approach adopted here, the probability distribution is maintained

over all user goals throughout the dialogue. Therefore, there is a probability

that one user goal is true and at the same time there is a probability that

its complementary user goal is true. Given the definition of the ontology,

any user goal is possible with some probability at any point in the dialogue,

regardless of the structure of the tree of partitions. At different turns it may

belong to different partitions, but it is always present in the representation.

The user goals that cannot be expressed under the assumed ontology are

ignored.

4.6 Relation to dynamic semantics

Dynamic semantics is a broad field of logic in natural language semantics

that deals with the problem of representing information that grows over

time. The emphasis is not on whether the meaning of an utterance is true

or false, but instead on how it changes the context [112].

Discourse is a form of natural language that extends over several utter-

ances [113]. Dialogue can be seen as an example of discourse. Dynamic se-

mantics allows the representation of discourse to be built incrementally [112].
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4.6 Relation to dynamic semantics

This is very similar to the main idea of partitioning where the representa-

tion of the user goal is built incrementally, using the user’s and the system’s

utterance. The notion of context in dynamic semantics terminology corre-

sponds to the representation of the user goal in the HIS framework.

In dynamic semantics, the information is partial and may not be true [112].

This is established through the use of operators for true, false andmaybe [114].

This is crucially different to the belief state representation adopted here. In

the belief state representation, there is a distribution over all possible user

goals, but each user goal on its own only has a representation of the con-

cepts that are true or false (see Table 4.1). The assumption is that the user

knows what they want at every dialogue turn. Therefore, the user utterance

I might go for a Chinese restaurant is represented in the same way as I’d

like to go for a Chinese restaurant. The system, however, does not know

the true user goal and therefore maintains a distribution of over all possible

user goals through out the dialogue.

Another important aspect of dynamic semantics is anaphora resolu-

tion [115]. Anaphora is a reference to something that has been mentioned

before [113]. Anaphora resolution is a way of determining what a particular

anaphora refers to. Various anaphora, e.g., pronoun, tense and presupposi-

tion, can be resolved using discourse representation theory [116]. Discourse

referent structures are created for different utterances and the referents be-

tween these structures are matched to resolve anaphora [115]. In a sim-

plified form compared to discourse representation theory, the representa-

tion of partitions can support anaphora resolution when the dialogue act is

matched with the partition. For example, consider the case where the user

requested a restaurant in the centre inform(type=restaurant, area=centre)

and system offered inform(name=“Char Sue”,type=restaurant,area=centre).

Later in the dialogue the user can refer to that restaurant by mentioning

its area for instance request(phone,type=restaurant,area=centre). That di-

alogue act matches the partitions that contain area=central. Given that

name=“Char Sue” was already the topic of conversation, the partition that

has both name=”Char Sue” and area=central will have the highest probabil-

ity. Note that this is one of the main differences with alternative approaches

like the Bayesian Update of Dialogue State (discussed in Section 2.5), where

different concepts that are not directly related to each other in the domain

ontology, are assumed to be independent.
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The final aspect of dynamic semantics that is considered here is discourse

coherence. Dynamic semantics aims to rank different discourse interpreta-

tions and to measure their degree of coherence [115]. It is important to note

that the belief state implicitly provides such a measure. At every dialogue

step all possible hypotheses are created and they are ranked by their belief.

If there is a mismatch between the dialogue act and the partition from the

same hypothesis, it is given a low probability by the dialogue act matching

model (Eq. 3.5 in Section 3.3.4). This mismatch can be interpreted as a lack

of coherence, which results in the hypothesis having a lower rank.

4.7 Pruning process

One of the biggest problems with applying the Hidden Information state

model to real-world domains is that the number of partitions grows expo-

nentially as the dialogue progresses. This results in a serous computational

limit which must be addressed for the model to be widely applicable. The

approach proposed here is to prune the hypotheses so that a maximum

number of partitions are maintained at any time.

In order to illustrate this problem, a simple experiment was performed

on the Cambridge tourist information domain (Appendix C.1). 3000 dia-

logues were generated in interaction with the agenda-based simulated user

as described in Section 3.4.2. The Dirichlet error model (Section 3.4.2) was

used to generate 10-best list at 40% error rate. The reason the Dirichlet

error model was used here, in contrast to the uniform error model in the de-

fault setting in Section 3.4.2, is that the uniform error model tends to give

a very high confidence to the true dialogue act if the N-best list is large,

making it easier for the dialogue manager to infer the true user goal.

Each dialogue was restricted to have a maximum of 100 turns. In Fig. 4.4

the average number of operating partitions is shown for first 22 dialogue

turns. In addition, the average time in seconds that is taken for the belief

update in each turn is given at each point in the graph1. In order for the

system to run in real time, the total response time (including decoding and

generation) should not be larger than 1 second, which means that the belief

update time should be kept well below that threshold. It is clear that some

1The runtime results are obtained on an 8-core Intel Xeon 2.83GHz processor and
24Gbytes RAM.
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kind of pruning technique is needed.
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Figure 4.4: Average number of partitions for dialogue turn. The values on
the curve denote the average time to perform the belief update in seconds.

4.7.1 Partition recombination

Pruning should be performed in such a way that the distance between the

belief state before and after pruning is minimal [117]. This can be achieved

by simply removing the low probability partitions. As noted earlier in Sec-

tion 3.3.3, belief state hypotheses are formed from the combination of a

partition, the last user action and the respective dialogue history. The

probability of each hypothesis is maintained throughout the dialogue. The

probability of a specific partition can be easily computed by marginalising

out the user action and dialogue history by summing all hypotheses contain-

ing that partition i.e., b(pt = p) =
∑

h∈Ht,h=(p,au,sd)
b(ht = h). This allows

for low probability partitions to be identified and removed. However, since

the partitions are built in such way that they partition the whole space of

user goals, completely removing a partition removes all the user goals that

are represented by that partition. The remaining partitions do not represent

all possible user goals anymore but just part of the goal space. This makes it

impossible to recreate the removed user goals which is clearly not desirable.

Rather than removing the partitions, the method proposed in [110] re-
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4. Extended state representation

duces the number of partitions by recombining the low probability leaf par-

titions with their parent partitions. The recombination is performed by

removing the complementary value from the parent partition, updating its

probability with the probability of its child partition and removing the child

partition.

Algorithm 5 Belief update with recombination

1: t← 0, Initialise b(h0)
2: repeat

3: Partition each p using attribute-value pairs from the last system action
am

4: Initialise b(pt+1 = p) ← 0 for all partitions p in the current set of
partitions

5: for every user action ã′u in N-best list o′ do
6: Partition each p using attribute-value pairs from each ã′u, create

new hypothesis h′ from each previous hypothesis h associated with
p using am and ã′u

7: for all p′ in the current set of partitions do
8: for each hypothesis h′ associated with p′ do

9: Update belief b(ht+1 = h′) according to Eq. 3.4
10: b(pt+1 = p′)← b(pt+1 = p′) + b(ht+1 = h′)
11: end for

12: end for

13: Recombine partitions w.r.t the current updated belief b(pt+1) so
that a maximum of χ partitions remains

14: end for

15: Choose the next system action a′m according to b(ht+1)
16: t← t+ 1
17: until dialogue ended

An outline of the belief update algorithm that implements this partition

recombination is given in Algorithm 5. In each dialogue turn, the parti-

tioning is performed using the attribute-value pairs from the last system

action (line 3). Then, for each observation in the N-best user input the par-

titioning is performed using its attribute-value pairs (line 6), the belief over

new hypotheses is updated (line 9) and the updated belief over partitions is

accumulated (line 10). If the number of partitions exceeds the threshold, the

partitions are recombined according to the current updated belief (line 13).

After the whole N-best list is processed, the next system action is chosen

according to the updated belief (line 15).
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This method is shown to be effective in domains that do not have many

attributes [110]. However, the method has its limitations in more complex

domains. Firstly, a partition can only be recombined with its parent even

though there may be other partitions it is complementary to and which

would be better candidates for recombination. Referring to the example

from Fig. 4.1-4.2, partition 1.1.1.1.1.1 is complementary both to partition

1.1.1.1.1 and to partition 1.1.1.1.2. Secondly, allowing only leaf partitions

to be removed might not be desirable in long dialogues. Leaf partitions are

usually the last to be created but in dialogues where the user goal evolves

over time, the partitions that are created early on typically become less

probable as the dialogue progresses. Thus, the more recent leaf partitions

are often more useful. However, if one simply modifies the recombination

technique to allow for non-leaf partitions to be recombined, as in for example

1.1.1 and 1.1.1.2 in Fig. 4.2, it becomes difficult to determine the right

position for the newly obtained partition. What is more, such a partition

would not have any complements so it would be impossible to remove it

before other partitions are recombined. Finally, the problem of partitions

without any complements can occur even in the case of recombining the leaf

partitions. For example, recombining 1.1.1.1.1.1 with its parent 1.1.1.1.1

results in a partition that does not have any complements. In complex

dialogues, where the user can change the goal, it may be important that

each partition has a complementary partition.

In summary, the requirements for the pruning algorithm are the fol-

lowing. Firstly, the belief state after the pruning should be such that the

system’s error is minimal. Secondly, all possible user goals must remain

represented. Thirdly, it must be always possible to perform the pruning.

In the next section a description of the pruning algorithm that meets these

requirements is given.

4.7.2 Pruning the applied attribute-value list

In this section, a new pruning method is presented that is not constrained

by the position of partitions in the tree and guarantees that every partition

has a complement.

Rather than recombining the partitions, the number of partitions can be

reduced by removing some of the applied attribute-value pairs. The marginal

probability of attribute-value pair α = β is the sum of probabilities of all
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partitions that have β set to true. In this way, a sorted list of the applied

attribute-value pairs can be obtained. The lowest probability attribute-

value pairs probably have the least impact on modelling the user goal and

therefore can be removed.

Let α = β be the attribute-value pair with the lowest-probability in

the list of applied attribute-value pairs. Assume that α = β is not among

the superiors (see Section 4.3) for any other applied attribute-value pair

αk = βk. To remove α = β, each partition that matches α = β has to be

joined with its complementary partition that matches α = ¬β. In order to

find all such pairs of partitions the following procedure is taken. Starting

from the root partition, partition p is examined to see if it contains node α

with a child node η containing ¬β. If not, the search is continued through

its children starting from the oldest. If node η does contain ¬β, partition

p is marked as upper. Then the search is performed through the children

of partition p, starting from the oldest, until one that contains node α with

a child node η containing β is found. It is marked as lower. Such a pair

of partitions is guaranteed to exist. The partitions are complementary and

only differ in the atomic node η that contains β and for every given upper

there is only one lower (see Stats. 1 and 5 in Appendix B.1). What is more,

if partitions upper and lower have child partitions, they have subtrees of the

same structure with these partitions as roots. Each partition from the upper

subtree will have its complement in the lower subtree. All that is needed is

to add the belief of each partition in the lower subtree to its complement

in the upper subtree, to remove ¬β from the upper partition and then to

delete the lower subtree (see Stat. 6 in Appendix B.1). The procedure is

applied repeatedly until there is no partition matching ¬β left. This can be

easily performed using a stack structure. The pseudo code is given in the

Appendix B.2.

Every time a lower partition is removed all the hypotheses that are as-

sociated with that partition are removed. However, when a node is removed

in an upper partition only the history related to that node is removed in

each associated hypothesis.

An example of the pruning procedure is shown in Fig. 4.5, where the

attribute-value pair food=Italian is removed from the list of applied attribute-

value pairs. The first partition that contains node food and ¬Italian is 1.1.1

and its child partition that contains Italian is 1.1.1.2. They are respectively
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Figure 4.5: Pruning an attribute-value pair from the tree of partitions.
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marked as upper and lower and both of them have child partitions which

are complementary, 1.1.1.3 and 1.1.1.2.1 respectively, similarly for partitions

1.1.1.1 and 1.1.1.1.1. Then, partitions with Italian are deleted and ¬Italian

is removed from their complementary partitions.

If α = β is among the superiors of some attribute-value pair αk = βk,

then αk = βk has to be pruned from the part of the tree that contains

α = β (see Stat. 8 in Appendix B.1). The algorithm is the same as the

one described above, with the difference that upper (3.4.2) and lower par-

titions are complementary in βk and both contain β set to true. Referring

to the example from Figs. 4.1-4.2, if, for instance, type=restaurant is to be

removed, then food=Italian and area=central must be removed first. If the

pruning is performed based on the lowest probability, it is never the case

that food=Italian has higher probability than type=restaurant, since it can

only occur in the partitions that have restaurant as true. However, some

attributes can occur for different realisations of class nodes. For example,

type=restaurant and type=hotel can both have pricerange=cheap (see Ta-

ble 3.2). Because of this, if type=hotel is to be removed, pricerange=cheap

only has to be removed from the partitions that have hotel.

Using this approach, one can guarantee that the lowest probability attribute-

value pair can always be removed from the tree of partitions, regardless of

when it was applied and how the partitions that contain it are structured in

the tree. After pruning an attribute-value pair, the structure of the tree of

partitions is the same as if that attribute-value pair had never been applied

at all, so the pruning does not affect the existence of complements.

Whilst the partitioning process exponentially increases the number of

partitions, the above pruning technique decreases it at the same rate, so

the total number of partitions remains bounded. This allows dialogues of

arbitrary length and it also enables large N-best inputs to be applied.

An outline of the belief update algorithm that applies the above pruning

method is given in Algorithm 6. In contrast to Algorithm 5, pruning is

applied before the processing of the N-best input, so that no information

from the current N-best list is lost before the system action is chosen for

the next turn. In order to accommodate negotiation-type dialogues, where

the user can change their mind, more importance is placed on the most

recent observations instead of keeping low probability, older information.

In this representation, what the user does not want and what the system is
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Algorithm 6 Belief update with pruning

1: t← 0, Initialise b(h0)
2: repeat

3: for all applied attribute-value pairs α = β do

4: P (α = β)←
∑

p∈Pt,α=β∈p

∑
h∈Ht,h=(p,au,sd)

b(ht = h)
5: end for

6: Prune the list of the applied attribute-value pairs w.r.t. P (α = β) so
that a maximum of χ partitions remains

7: Partition each p using attribute-value pairs from the last system action
am

8: for every user action ã′u in N-best list o′ do
9: Partition each p using attribute-value pairs from ã′u, create new

hypothesis h′ from each previous hypothesis h associated with p
using am and ã′u

10: for all p′ in the current set of partitions do
11: for each hypothesis h′ associated with p′ do

12: Update belief b(ht+1 = h′) according to Eq. 3.4
13: end for

14: end for

15: end for

16: Choose system action a′m according to b(ht+1)
17: t← t+ 1
18: until dialogue ended

uncertain about are represented in the same way to retain tractability. Low-

probability slot-value pairs are the ones that the user is least likely to want

so it is safer to remove them rather than the ones that were obtained from

the most recent N-best input. At the beginning of each dialogue turn, the

marginal probability of all applied attribute-value pairs is calculated (lines

3-5). Then, the lowest probability attribute-value pairs are pruned (line 6).

Following this, the attribute-value pairs from the last system act are used for

a new stage of partitioning (line 7). Next, partitioning is performed for each

user dialogue act in the N-best input list, using its attribute-value pairs and

the belief is updated (lines 8-15). Finally, the next system action is chosen

based on the updated belief (line 16).

In Appendix C.2 an example of a long negotiation-type dialogue which

incorporates this pruning technique is given together with the list of active

attribute-value pairs and their marginal probabilities at each turn.
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4.8 Evaluation results

The evaluation of the proposed partitioning techniques is divided into three

parts. Section 4.8.1 examines how well the system can deal with user

goals when the constraints are in the form of disjunctions. Then, in Sec-

tion 4.8.2, the performance of the proposed pruning algorithm (described

in Section 4.7.2) is compared to a version of the partition recombination

algorithm [110]. Finally, in Section 4.8.3, the effect of different pruning

thresholds on performance is examined.

For each experiment, the policy was trained and evaluated in interac-

tion with the agenda-based simulated user as described in Section 3.4. The

application is the Cambridge tourist information system mentioned in Sec-

tion 4.1.1 and described in detail in Appendix C.1. In the set-up used here,

the simulated user gives a reward at the end of each dialogue of 100 if the

dialogue was successful and 0 otherwise, less the number of turns. This

reward is slightly modified from the one used in Section 3.4.1 to encourage

the system to engage in long dialogues where the user may change their

mind. When the system makes an offer, the simulated user changes its goal

with probability 0.143 (as determined by parameter ReqAltsAfterEntRec2 in

Table 3.7 in Section 3.4.2). In the case when the system informs the user

there is no matching entity the user always changes their mind.

The simulated user allows a maximum of 100 turns in each dialogue,

terminating it when all the necessary information has been obtained or if

the dialogue manager repeats the same dialogue action more than three

times in a row. The Dirichlet error model (see Section 3.4.2) was used to

add errors to the user input. In order to demonstrate the system’s capability

for dealing with reasonably long N-best lists, the length of the N-best list

was set to 10. The system takes about 13 turns on average to complete a

dialogue; Fig. 4.6 shows how the number of turns increases as the user input

becomes more noisy. The policies were trained using the grid-based Monte

Carlo control algorithm in an incremental noise setting (see Section 3.4).

The resulting policies were evaluated with the simulated user performing

2500 dialogues at each error rate.
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Figure 4.6: Average number of turns as a function of error rate.

4.8.1 Disjunctions in the user goal

In the first experiment, the simulated user was modified to produce con-

straints in the user goal such that on average 20% of them contain a dis-

junction of two values, for example, type=restaurant, pricerange = moder-

ate ∨ cheap, food=Japanese. The performance of the system is compared on

tasks that both contain and do not contain disjunctions. The performance is

measured as the average reward at different confusion levels and the results

are presented in Fig. 4.71. As can be seen from the graph, the system can

deal with disjunctions in the user constraints at least as well as it can for

standard user constraints.

4.8.2 Pruning vs recombination

The second experiment compares the two methods for reducing the num-

ber of partitions: pruning the applied attribute-value list and the partition

recombination algorithm. In both cases, the maximum number of active

partitions χ was set to 300. The performance was examined by measuring

the average reward that the system obtained with each of the methods. The

results are given in Fig. 4.8, which shows that pruning the applied attribute-

1The error bars represent a 95% confidence interval.
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Figure 4.7: System performance with disjunctions in the user’s request.

value list gives a better overall performance. As shown by the error bars,

the results are statistically significant in the high noise regions, suggesting

that it can more effectively manage user goal partitioning in noisy complex

domains compared to the simpler partition recombination approach.
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Figure 4.8: System performance comparison of attribute-value list prun-
ing (Pruning) and partition recombination (Recombination).
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4.8.3 The effect of different pruning thresholds

In order to examine the effect that the pruning has on the system’s per-

formance, three different pruning thresholds χ were compared: 3, 30 and

300. In addition, a contrast is provided between two different user simulator

settings – one where the user goal stays constant during the dialogue, and

one where it changes. The performance comparison is given in Fig. 4.9.

In the case when the user goal stays constant during the dialogue, in-

creasing the number of partitions leads to improved system performance.

This is in line with the findings in [110]. It is important to note that, in

contrast to the dramatic difference in performance between pruning thresh-

old 3 and 30, the difference between 30 and 300 is largely not statistically

significant. 3 partitions roughly correspond to only 2 attribute-value pairs

representing the user goal and the user typically has about 4 constraints,

so the goal in this case is not fully represented. Therefore, if the dialogue

manager has a very low pruning threshold it is not able to represent the

user goal even when there are no errors, which leads to low performance.

The results from Fig. 4.9 suggest that increasing the number of partitions

over 300 would not improve the performance further and this was confirmed

by further tests with a threshold of 3000. In the case where the user goal

changes during the dialogue, the threshold of 30 gives a more robust perfor-

mance on higher error rates then the threshold of 300, see Fig. 4.9(b). This

is probably a consequence of the fact that the HIS system does not have an

explicit state transition matrix. A change of user goal can also be achieved

by discarding earlier evidence in favour of the most recent evidence, and

pruning helps achieve this. Thus, in the HIS model, pruning enables the di-

alogue to be more robust to inconsistent user behaviour. In real dialogues,

users do not normally have a strictly defined goal but are likely to change

their mind depending on the system’s response, and pruning can facilitate

this.

4.9 Summary

This chapter has described how enriching the dialogue state structure with

an explicit representation of complements can improve POMDP-based dia-

logue modelling in a complex domain. The proposed representation enables

the use of disjunctions and conjunctions in the user request as well as quanti-
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(a) User goal stays constant during the dialogue
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Figure 4.9: Influence of the pruning threshold on system’s performance when
the user has a constant goal (a) and when the user’s goal changes (b).

fiers in the system’s response. More importantly, the notion of complements

provides a basis for a pruning technique that can effectively bound the num-

ber of partitions created during a dialogue and thereby ensure tractability. It

supports N-best lists of user dialogue act hypotheses which are large enough
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4.9 Summary

to include all of the informative hypothesised utterances from noisy speech

and it can handle dialogues of arbitrary length. It was shown that this new

pruning technique leads to better performance than an existing recombina-

tion method in a practical real-world application domain. The next chapter

discusses how policy optimisation can further improve the performance of

POMDP-based dialogue managers.
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Chapter 5

Policy optimisation in

summary space

5.1 Introduction

Policy optimisation in a POMDP-based dialogue system faces many chal-

lenges. Many of these are the result of the approximations required to

achieve tractability in the learning process. Section 3.3.5 showed that for

real-world systems, one must compress the master belief space into a much

smaller summary space for learning to be tractable. However, learning

within a summary space is not trivial. When using a summary space, many

belief points will map to the same summary point for which the policy

proposes a summary action. That summary action might not always be

applicable for each of the original belief points, and there is then a problem

in performing the inverse mapping back to the master space.

This chapter discusses the invalid action problem in more detail. Sec-

tion 5.4 proposes an extension to the original grid-based Monte Carlo control

algorithm to deal with the invalid action problem. Results and different con-

trasts are then presented in Section 5.5.

5.2 The invalid action problem in a POMDP

In a partially observable Markov decision process, the belief state represents

a probability over all states. Since any state is possible in any belief state,

the policy must include the possibility of taking any action in any belief
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Figure 5.1: Two state POMDP with an impossible action-state pair.

state. However, if an action is not valid in some states, every belief state

will have a non-negative probability that the action is invalid. This poses a

problem for policy optimisation.

Under the assumption that once an action is proposed it is possible

to determine whether or not it is valid, even if the actual state remains

unknown, this problem can be dealt with in different ways. One way would

be to expand the action set so that a single default action which is guaranteed

to be valid in any state is associated with every action. However, this can

lead to suboptimal results.

Consider, for example, a simple POMDP with state space S = {s1, s2},

some finite observation space, and action space A = {a1, a2, ad}, where

action a1 is not valid in state s1. The rewards are r(s1, a2) = 3, r(s1, ad) = 1,

r(s2, a1) = 5, r(s2, a2) = 2 and r(s2, ad) = 1. In order to perform policy

optimisation, each action has to be applicable for any belief state b(st). In

order to allow action a1 to be performed in any belief state b(st), it has to

be given a valid interpretation in state s1. This can be done by redefining

action a1 as a1 → ad, meaning that if action a1 is not valid, back-off to

default action ad instead. In this way, this new action a1 → ad is used

for policy optimisation instead of action a1. After applying 1-step of the
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5.3 The invalid action problem in a summary space-based

POMDP dialogue manager

POMDP Value Iteration algorithm (Section 2.2.5), there are three different

policy trees: one associated with action ad, one associated with action a2

and one associated with action a1 → ad. The optimal 1-step Value function

therefore comprises a1 → ad and a2 (dashed upper surface in Fig. 5.1).

However, this is clearly a suboptimal solution compared to a1 → a2 (solid

line in Fig. 5.1). Had action a1 been replaced with actions a1 → ad and

a1 → a2 there would be four policy trees and 1-step Value iteration would

yield a1 → a2 as the optimal 1-step Value function. This demonstrates that

every possible back-off strategy should be considered, as it could be a part

of the optimal policy.

In the general case, the optimal back-off for action ai will be a sequence

ai → ai1 . . . → aij . . . → ai|A|−1 . Redefining each action to include all

possible back-off actions would increase the cardinality of the action set to

n! and this is clearly not feasible.

An alternative way of finding the optimal back-off action is to use the

Q-values. The Q-value, Q(b, a), is the expected reward from taking action

a in belief state b and following the policy thereafter. It can be calculated

as Q(b, a) =
∑

s∈S Q(s, a)b(st = s), where Q(s, a) is the Q-value of taking

action a in state s (see Eq. 2.14 in Section 2.2.5). For each action a, the

set of states in which that action can be taken is known. The learning

algorithm can estimate Q(b, a) by summing over only the Q(s, a) values for

which action a is valid in s. Ordering Q(b, a) in a list for each action a

provides a sequence of possible back-off actions which can be searched until

a valid action is found in belief state b. This intuition is the motivation

behind the N-best back-off action selection mechanism described further in

this chapter.

5.3 The invalid action problem in a summary space-

based POMDP dialogue manager

In a dialogue system, given some prior information on user preferences, there

is nothing in principle to stop the system from saying as its very first action:

“Please confirm that you want a Chinese restaurant?”, even though the user

has not yet said anything. However, the invalid action problem presents

itself in a system which optimises the policy in a compressed, summary

space, choosing between actions which are simple strategic decisions such
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as “inform”, “confirm”, etc. In this case, the fact that an action such as

“confirm” is not valid in a particular belief state cannot be determined from

the summary state itself since many different belief states may map to the

same summary state. Only after mapping back to the master state, when

the information from most likely hypothesis has to be taken to form the

system dialogue act, will it be discovered that there is no information which

can be confirmed.

The discretisation of the summary space further exacerbates the invalid

action problem. The effect of discretisation is to represent all belief points

in a neighbourhood by a single representative grid point. Even if there are

no visited summary points within the neighbourhood with invalid actions,

merging them into a single grid region will generate the union of actions for

the whole region and this union might have invalid actions. One possibility

to avoid this is to increase the information transferred from master to sum-

mary space with the subset of actions that are valid in that summary state.

This is further examined in the experimental section below.

An alternative approach is to amend the grid-based learning with back-

off action selection that uses Q-function values. A detailed algorithm for

implementing this is given in the next section.

5.4 The extended grid-based Monte Carlo control

algorithm

In this section, an extension to the Monte Carlo control algorithm (Algo-

rithm 2, Section 2.2.1) is given that ranks the alternative actions for each

point in belief space into an N-best list ordered by Q-value. The basic idea is

simple. The POMDP summary space is represented by a number of discrete

grid points. The system interacts with a user and Q-values are estimated

for each grid point and each action. The action with the highest Q-value at

each grid point then forms the policy. Extending the standard algorithm to

include N-best action selection is simply a matter of storing a rank-ordered

list instead of only the highest Q-value at each grid point.

Learning starts by arbitrarily assigning values to the Q-values for each

action a associated with the initial grid point b̂0. In addition to the Q-

values, an N -value is associated with each grid point-action pair (b̂, a). The

N -value records the number of times that action a is taken in grid point b̂.
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Algorithm 7 Extended grid-based Monte Carlo control algorithm

1: B̂ = {b̂0} initial grid point
2: for all a ∈ A do

3: Q(b̂0, a)← arbitrary
4: N(b̂0, a)← arbitrary
5: end for

6: π(b̂0) = ai1 . . . ai|A| arbitrary order
7: repeat

8: repeat

9: Update current belief state b

10: b̂← GridPoint(SummaryState(b))

11: ai1 , . . . , ai|A| ←

{
arbitrary order with prob. ǫ

π(Nearest(b̂, B̂)) with prob. 1− ǫ

12: record (b̂, a), where a is the taken action
13: until episode terminates
14: for pairs (b̂, a) appearing in the episode do

15: R← discounted return following the occurrence of (b̂, a)
16: if ∃b̂k ∈ B̂, |b̂− b̂k| < ν then

17: Q(b̂k, a)← Q(b̂k,a)∗N(b̂k,a)+R

N(b̂k,a)+1

18: N(b̂k, a)← N(b̂k, a) + 1
19: else

20: add b̂ to B̂, Q(b̂, a)← R, N(b̂, a)← 1
21: end if

22: end for

23: for all b̂k ∈ B̂ do

24: π(b̂k) = actions ordered by Q(b̂k, a)
25: end for

26: until converged
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Each learning episode is conducted ǫ-greedily i.e., the current best policy

(π(b̂) = argmaxaQ(b̂, a)) is used with probability 1−ǫ and with probability

ǫ a random action is taken. In the standard algorithm, the policy consists of

one action per grid point – this is the action that has the highest Q-value.

For N-best action selection, the algorithm is modified so that the policy

consists of a list of actions per grid point, ordered by their Q-values. In

a similar way, when exploring, instead of generating one random action, a

random ordering of actions is generated. In all cases, the reward obtained

for each turn is assigned to the Q-value for the action that was actually

taken. Every time a new belief state b is visited, it is mapped to a summary

state b̂ and then to the nearest grid point in the set of grid points B̂. If

there is no nearby grid point, a new one is created and added to B̂. Thus,

during training grid points are created with their respective lists of Q- and

N -values. A complete description is given in Algorithm 7.

5.5 Evaluation results on simulated user

This section presents results for the proposed N-best back-off action selec-

tion method and compares it with a simple fixed back-off baseline and an

alternative based on extending the summary space with features designed to

minimise the occurrence of invalid actions. For each experiment, the policy

was trained and evaluated in interaction with the agenda-based simulated

user as described in Section 3.4.

5.5.1 Fixed back-off

The simplest solution to the back-off problem is to use a single global default

action as the back-off action. The requirement for this action is that it should

be available at any point in the belief space. In the HIS system, the only

appropriate candidates are the UserRepeat action where the system asks the

user to repeat the last input, or the Bye action where the system ends the

dialogue, (see Table 3.6). In the case of UserRepeat, users typically repeat

the last dialogue act or hang up if the system has already asked this several

times. By asking the user to repeat the last act, the system can potentially

obtain a better estimate of the current user state, but it can also waste

time, leading to a lower reward. The Bye action would only be appropriate

for a system which could divert to an operator, otherwise its use would be
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unacceptable. Hence, the UserRepeat action is used for the fixed back-off

baseline. The training schedule adopted was the same as in Section 3.4.3.

The performance is shown in Figs. 5.2 and 5.3.

5.5.2 Extension of the summary space

The second approach to the problem of invalid actions is to extend the

summary space with explicit information about which action can be taken.

In this approach, each summary grid point is augmented with a set of binary

flags. Flags are defined for each summary action and indicate whether or

not the action is valid for that grid point. If two belief states have different

subsets of plausible actions then they are mapped to different grid points.

Since there are 11 possible summary actions (see Table 3.6 in Section 3.3.5),

this can potentially increase the size of the summary space by a factor of

211.

In practice, however, some actions are always possible and there are

also dependencies between them. In the experiments conducted here, the

extended summary space resulted in a policy with 2000 grid points. The

training scheme used for this system was similar to the the one in Sec-

tion 3.4.3, with the difference that training had ten times more dialogues

to compensate for the increased number of grid points. The performance of

this system is shown in Figs. 5.2 and 5.3.

There is a third approach that could be taken to deal with the problem

of invalid actions. For a given summary point, one can find the closest grid

point which has a valid action as its choice. The corresponding action is

then taken. While this approach avoids hand-crafting and extending the

summary space, the problem is that it approximates a summary point with

a grid point that is further away than the closest one. This increases the area

of summary space used to estimate the Q value, which makes the estimates

less accurate. Worse than this, the area of belief space used to estimate the

Q-values for a summary point will vary over time and between actions. This

allows for a potential bias, increases the variance in the estimates and could

cause serious issues during training.

As an example, consider a sample belief point b. Due to insufficient

training, the current estimate of the top action for the closest summary

point b̂i may not be valid, even though the optimal Q-function would yield

a valid top action. The strategy then finds the closest summary point b̂j
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having a valid top action and assigns the achieved reward to its Q-value.

Later in the training, the action will become valid but by that stage the

reward is already included in estimating the Q-value of b̂j . That Q-value is

therefore biased by including rewards for points that will not be seen again,

and at the same time the Q-value at b̂i is less accurate, leading to slower

convergence. On the other hand, if the reward is assigned to the Q-value of

the closest point b̂i, there is a mismatch between the Q values used to make

decisions and the estimated Q-values, which violates the requirements of the

algorithm. If the rewards are to be assigned in this way, then one must use

the ranking obtained by the valid actions’ Q-values at b. This gives a fourth

strategy, which is the N-best strategy examined here.

5.5.3 N-best back-off
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Figure 5.2: Average reward for simulated dialogues between the fixed back-
off strategy, the strategy with extended summary space and the N-best
back-off strategy on different error rates.

Q-function values from the Monte Carlo control algorithm ranks a list

of actions by policy preference associated with each summary state (see

Section 5.4). Using this N-best list for back-off action selection, the policy

was trained using the same training scheme as in the fixed back-off strategy.

The performance results for this system are given in Figs. 5.2 and 5.3.
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Figure 5.3: Comparison of the percentage of the successfully completed
simulated dialogues between the fixed back-off strategy, the strategy with
extended summary space and the N-best back-off strategy on different error
rates.
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Figure 5.4: Percentage of backed-off actions for the Fixed back-off strategy
and the N-best back-off strategy for different error rates.

Average rewards are relatively close to each other for all of these strate-

gies (Fig. 5.2). However, the average success in Fig. 5.3, shows that the N-
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5. Policy optimisation in summary space

best back-off outperforms both alternative strategies across all error rates.

The extension of the summary space improved the performance on low error

rates. However, because the summary space was extended, the performance

degraded rapidly in noise and even increasing the number of training dia-

logues by a factor of 10 was not able to compensate for this.
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Figure 5.5: Percentage of actions on different positions in the N-best list
taken in the N-best back-off strategy.

It is also interesting to note that the frequency with which the top pro-

posed action is not taken differs in the N-best and fixed back-off strategies.

The policy obtained using the N-Best back-off strategy backs off more often

(see Fig. 5.4). This suggests that this policy has more liberty when choosing

its action, since there is a list of back-off actions to try if the top action

fails. Not only does the N-best strategy back off more, but the back-off

rate increases more dramatically with noise than the fixed back-off strat-

egy. This can be ascribed to the difficulty of correctly determining which

actions are valid in noisy states. The N-best strategy tries the actions that,

if valid, achieve the best reward, whereas the fixed back-off chooses the ac-

tions that rarely lead to back-off. Fig. 5.5 shows the percentage of the first-,

the second- and the third-best action taken. The results were obtained from

2500 dialogues for each error rate. It shows that on average, 82% of the time,

the top action can be mapped to a master action, but there is a significant
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tail when the system backs off to the second- and the third-best action.

5.6 Summary

Invalid state-action pairs are an intrinsic feature of summary-based methods

for POMDPs. Available solutions try to back off to a default action that is

defined everywhere, but this leads to sub-optimal performance. Alternative

solutions to this problem have been examined in the framework of a real-

world summary space-based POMDP dialogue system. In a baseline back-off

strategy, one summary action is chosen to be the back-off action. In another

strategy, the summary space was extended to include information about the

subset of actions which are plausible in that particular state. However,

this resulted in fragmentation of the space, increased demand for training

dialogues and poor robustness to noise.

On the other hand, the strategy of associating an N-best list of actions

ranked by Q-value with each grid point worked well. This approach provided

the best performance at all error rates and, importantly, it did not need any

more training data than the fixed back-off strategy.

Apart from showing how dialogue performance can be improved by the

correct choice of back-off actions, these results show the inability of grid-

based reinforcement algorithms to deal with the extension of the summary

space, leading to reduced robustness. This is a major constraint since it

places a limit on which parts of the system’s behaviour can be automatically

optimised. This motivates the need for an alternative policy optimisation

approach that can facilitate faster learning, which will be investigated in the

next chapter.
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Chapter 6

Gaussian processes for fast

policy optimisation

6.1 Introduction

The POMDP policy optimisation procedure described previously uses grid-

based approximations of the corresponding continuous state MDP. This al-

lows the use of a discrete MDP reinforcement learning algorithm to optimise

the Q-function at the grid points, which then yields an optimised policy.

Section 3.4 showed that in order to learn a Q-function for a real-world di-

alogue task with approximately 700 grid points, around 100, 000 dialogues

are required. This number is too large for the optimisation to take place in

interaction with real users so the interaction is normally performed with a

simulated user. This is not ideal because of potential discrepancies between

real and simulated user behaviour. At the same time, the number of grid

points is often relatively small, which brings the quality of the approxima-

tion into question. Unfortunately, further extension of the summary space

was shown in Section 5.5 to lead to a loss in performance. The main cause

of this deficiency is that an estimate of the Q-function at one grid point

does not contribute to the estimate at another grid point. No matter how

similar the behaviour of the Q-function is at these points, the values are

always considered independent. Therefore, the grid-based approach has a

slow convergence rate and limits the ability to extend the summary space,

which is clearly not desirable. An alternative algorithm which does not have

these problems would be an important improvement.
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A common way to deal with MDPs with continuous state and action

spaces is to use a parametric approximation of the Q-function or the policy.

This is normally represented by a combination of basis functions [32, 73].

This approach is very effective at ensuring tractability and removes the

need for storing large tables of grid-points. Instead, it only requires that

a relatively small number of parameters be stored. A drawback, however,

is that the solution is only optimal within the given basis. In particular,

for dialogue policy optimisation, it is often difficult to know which basis

function would represent the Q-function appropriately and this normally

requires that the set of feature functions are defined using expert knowledge

about the domain. This chapter proposes an alternative approach which

does not make such strong assumptions about the form of the Q-functions.

Instead, a non-parametric approach based on Gaussian processes (GPs) is

used to overcome the drawbacks of these alternative approaches. Note that

a non-parametric approach does not mean a parameter-free approach, but

rather that regardless of how the model parameters are set, given enough

samples the model converges to the optimal solution [118].

Gaussian processes are non-parametric Bayesian models used for func-

tion approximation. They have been successfully applied to reinforcement

learning for continuous-space MDPs, using both model-free approaches [119,

120] and model-based approaches [118, 121]. In this chapter, the Gaussian

process is used as a model for the Q-function. An advantage of Bayesian ap-

proaches is that they offer a principled way of incorporating prior knowledge

about the underlying task in the learning process, which gives them the po-

tential to improve learning rates. As already noted, it is important that the

dependencies of the Q-function in the different parts of the belief state space

are taken into consideration during learning. Gaussian processes are able to

incorporate the prior knowledge of these dependencies elegantly through the

choice of the kernel function, the purpose of which is to describe correlations

in different parts of the space. In an ideal case, this approach would fully

replace the need for a summary space by modelling correlations directly in

the full belief space, although it is possible to apply them on the summary

space as well. In addition, Gaussian processes allow the variance of the

posterior to be estimated, thus modelling the uncertainty of the Q-function

approximation. This is particularly useful for dialogue management, as for

every belief state-action pair the Gaussian process does not only provide the
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Q-function estimate, but also a measure of uncertainty in taking that action

in that belief state. This potentially allows the estimate that was obtained

through interaction with the simulated user to be further refined in inter-

action with real users. The application of Gaussian processes to model-free

reinforcement learning is therefore well suited to dialogue management.

The next section presents an overview of Gaussian processes for model-

free reinforcement learning. In Section 6.3 the core idea of the method is

explained on a toy dialogue problem, where different aspects of GP learning

are examined and the results are compared. Section 6.4 then demonstrates

how this methodology can be applied to the HIS dialogue manager for a

real-world problem.

6.2 Gaussian process reinforcement learning

This section provides an overview of Gaussian processes in reinforcement

learning. Gaussian process regression is reviewed [37], and a method for

extending the approach to reinforcement learning is described. Particular

aspects of Gaussian process reinforcement learning that are discussed are

the choice of kernel function, the computational complexity and efficient

exploration of the state space. A Gaussian process reinforcement learning

algorithm is described and its advantages are discussed in the light of dia-

logue management.

6.2.1 Gaussian process regression

A Gaussian process is a set of random variables, any finite subset of which is

jointly Gaussian distributed. A Gaussian process, denoted as f(x) ∼ GP (m(x), k(x,x)),

is fully specified by its mean function m(x) = E (f(x)) and its covariance

function k(x,x′) = E ((f(x)−m(x))(f(x′)−m(x′))), also called the kernel

function. The kernel function is a positive definite function that represents

function correlations. It defines how the function values in two points are

correlated. The positive definiteness ensures that any multivariate Gaussian

distribution derived from the Gaussian process is well-defined.

When using the Gaussian process, one starts by specifying the prior

and the aim is then to compute a posterior given some observations. In

the simplest case of GP regression, f(x) is the unknown function for which

an approximation is sought, and a zero-mean Gaussian process with kernel
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function k(x,x′) is assumed as the prior distribution, f(x) ∼ GP (0, k(x,x)).

The posterior distribution of f(x) given the function values at some repre-

sentative data points could then be computed using simple algebraic formu-

lae [37].

In most real-world applications however, the true value of the function

at the data points is not available, and only some noisy observations may

be obtained. Let yt = [y1, . . . , yt]
T be noisy observations of the function at

data points Xt = [x1, . . . ,xT ]
T, and yi = f(xi) + ξ is assumed, where the

noise is additive, independent and Gaussian distributed, ξ ∼ N(0, σ2). For

a Gaussian process, the joint distribution of the observed values and the

function value at a test point, f(x), can be shown to be [37]:

[
yt

f(x)

]
∼ N

(
0,

[
Kt + σ2I kt(x)

kT
t (x) k(x,x)

])
, (6.1)

where Kt is the Gram matrix, i.e., the matrix of kernel function values

between each pair of data points, (Kt)ij = k(xi,xj), where i, j ∈ {1, . . . , t},

and kt(x) is the vector of kernel function values between test point x and

each data point, kt(x) = [k(x,x1) . . . k(x,xt)]
T.

Conditioning the joint Gaussian prior (Eq. 6.1) on the observations yields

the posterior of f(x) [37]:

f(x)|yt ∼ N
(
f(x), cov(x,x)

)
,

f(x) = kt(x)
T(Kt + σ2I)−1yt,

cov(x,x) = k(x,x)− kt(x)
T(Kt + σ2I)−1kt(x).

(6.2)

From Eq. 6.2 it is required that data points Xt are known since yt are

observations at these points. In the literature this is often emphasised by

the notation f(x)|yt,Xt. From that notation, it is clear that the posterior

depends on data points and the observations at the data points. It is im-

portant to note, however, that the variance of the posterior only depends

on the data points and not the observations. With more observations, the

variance decreases and the estimate of the mean is refined.

6.2.2 The Q-function as a Gaussian process

As outlined in the introduction, a Gaussian process can be used to model

the Q-function in reinforcement learning. The approach that is adopted here
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is a model-free approach, based on the description given in [120].

A discrete-space POMDP can be viewed as a continuous-space MDP, see

Section 2.2.6. If S is the POMDP state space, its belief state at turn t, b(st),

can be seen as the state variable in its corresponding MDP. It takes values

b ∈ B, where B is a continuous space of dimensionality |S|, namely [0, 1]|S|.

In dialogue management, however, this space may be reduced to a summary

space that contains both continuous and discrete variables, see Section 3.3.5.

Therefore, in the most general case, the approximation framework needs

to support modelling of the Q-function in a multidimensional space that

consists of both continuous and discrete variables. A Gaussian process allows

such modelling. For now, the MDP with the full belief state space B is

considered, but it will be shown later how the description generalises to

summary spaces.

As defined by Eq. 2.1 in Section 2.2.1, the discounted return Rπ
t for time

step t and a given policy π is the total accumulated reward acquired using

that policy starting from that time step:

Rπ
t =

∞∑

i=0

γirt+i+1, (6.3)

where rt+i+1 is the immediate reward in time step t+ i+1 and γ, 0 < γ < 1,

is the discount factor. If the immediate reward is a random process, the

discounted return is also a random process.

The discounted return for policy π can be written recursively as:

Rπ
t = rt+1 + γRπ

t+1. (6.4)

The Q-function for policy π is the expectation of the discounted return

for that policy given belief state b and action a in time t, over all possible

belief state sequences that can be generated with policy π (see Eq 2.3 in

Section 2.2.1):

Qπ(b, a) = Eπ (Rt|b(st) = b, at = a) . (6.5)

If the transition probabilities do not change over time, Qπ(b, a) is not a

random value. However, during the process of estimation it can be consid-

ered to be a random variable.

The discounted return can therefore be decomposed into a meanQπ(b, a)
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and a residual ∆Qπ(b, a):

Rπ
t (b(st) = b, at = a) = Qπ(b, a) + ∆Qπ(b, a). (6.6)

Substituting Rπ
t and Rπ

t+1 from Eq. 6.6 into Eq. 6.4 yields:

rt+1(b(st) = b, at = a) = Qπ(b, a)−γQπ(b′, a′)+∆Qπ(b, a)−γ∆Qπ(b′, a′),

(6.7)

where b(st+1) = b′ is the next belief state and a′ = π(b′) is the next action,

at+1 = a′.

Let Bt = [(b0, a0) . . . , (bt, at)]T be a sequence of t belief state and action

samples1 generated with policy π. Then, Eq. 6.7 becomes:

r1 = Qπ(b0, a0)− γQπ(b1, a1) + ∆Qπ(b0, a0)− γ∆Qπ(b1, a1)

r2 = Qπ(b1, a1)− γQπ(b2, a2) + ∆Qπ(b1, a1)− γ∆Qπ(b2, a2)
...

rt = Qπ(bt−1, at−1)− γQπ(bt, at) + ∆Qπ(bt−1, at−1)− γ∆Qπ(bt, at),

(6.8)

where r1, . . . , rt are the acquired immediate rewards. This can be written

in a more compact form as

rt = Htq
π
t +Ht∆qπ

t , (6.9a)

where

rt = [r1, . . . , rt]T (6.9b)

qπ
t = [Qπ(b0, a0), . . . , Qπ(bt, at)]T, (6.9c)

∆qπ
t = [∆Qπ(b0, a0), . . . ,∆Qπ(bt, at)]T, (6.9d)

1Random variables are denoted with subscript, e.g., at is a random variable at some
time step t. Samples are denoted with a superscript e.g., a

t is the action that was taken
at time step t.
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and

Ht =




1 −γ · · · 0 0

0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ



. (6.9e)

By modellingQπ(b, a) as a Gaussian process, Qπ(b, a) ∼ GP (0, k((b, a), (b, a))),

and ∆Qπ(b, a) as Gaussian noise, ∆Qπ(b, a) ∼ N(0, σ2), a similar procedure

to the one outlined in Section 6.2.1 can be applied to find the posterior of

Qπ(b, a), given a set of belief state-action pairs Bt and the observed rewards

rt in these belief states. The posterior is an instantiation of Eq. 6.2.

Qπ(b, a)|rt,Bt ∼ N(Q(b, a), cov((b, a), (b, a))),

Q(b, a) = kt(b, a)
THT

t (HtKtH
T

t + σ2HtH
T

t )
−1rt,

cov((b, a), (b, a)) = k((b, a), (b, a))

− kt(b, a)
THT

t (HtKtH
T

t + σ2HtH
T

t )
−1Htkt(b, a)

(6.10)

where kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T.

This represents the posterior at time step t of the Q-function associated

with the policy π. If this was the posterior of the optimal Q-function, then

for every belief state b the action that maximises the mean of the Q-function

defines the optimal policy:

π(b) = argmax
a

Q(b, a). (6.11)

The objective of reinforcement learning is therefore to obtain the optimal

policy or to estimate the Q-function that yields the optimal policy.

In reinforcement learning algorithms there is typically a relationship

between Q-function (or Value function or policy) at different time steps,

which then allows the estimated version to be updated. For example, in

dynamic programming algorithms such as value iteration (Algorithm 1 in

Section 2.2.2) the value function in the previous step is used to re-estimate

the value function at the current time step. In the case of Monte Carlo rein-

forcement learning approaches, the samples are acquired during the episode

(a dialogue) and then the Q-function is updated at the end of the episode us-
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ing the estimate from the previous episode (see Algorithm 2 in Section 2.2.2).

In the temporal-difference reinforcement learning algorithm the time steps

are consecutive (see the Sarsa algorithm, for example where the update oc-

curs at every step - Algorithm 4 in Section 2.2.2).

The Gaussian process model of the Q-function described here uses a

relationship between distributions of Q-function at two different time steps.

This is in contrast to standard reinforcement learning algorithms where a

relationship between values of the Q-function at two time steps is used.

The Q-function GP model presented has given so far a relationship be-

tween the initial time step and time step t. At the initial time step, the

distribution is just a zero-mean Gaussian process with the kernel function

k((b, a), (b, a)), since no data has been observed. At time step t, the dis-

tribution is the posterior distribution given the set of observed rewards rt

in belief state-action pairs Bt. In the same way, the posterior can be calcu-

lated for observed rewards in the sequences of belief states of all dialogues in

the training set generated with some policy. However, that would only give

the posterior distribution of the Q-function associated with that policy. In

order for the Q-function to be optimal, the data from which it is estimated

needs to be generated in an ǫ-greedy manner, i.e., either according to the

current estimate of the Q-function or randomly, and the posterior needs

to be re-estimated every time a new data point is observed. An example

of a Gaussian process reinforcement learning algorithm that optimises the

Q-function on-line in an ǫ-greedy manner is the GP-Sarsa algorithm [120].

It will be described in Section 6.2.5. Prior to that, the choice of kernel

function is discussed which is followed with a discussion on reducing the

computational complexity in Section 6.2.4.

6.2.3 Kernel function and hyper-parameter optimisation

The kernel function encodes prior knowledge about function correlations,

and as such is crucial for the successful application of Gaussian processes to

modelling a given function. Setting the kernel function manually requires a

good understanding of the behaviour of the unknown function. For example,

if, for any given point, it is expected that the unknown function has a similar

behaviour in the vicinity of the given point, then the kernel function should

account for this smoothness. In the same way, if the function is periodic,

then the kernel has to capture that behaviour. Different kernel functions
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will be described later in this chapter for a specific task.

A problem arises when there is little prior knowledge about the domain,

or when the domain is difficult to quantify in terms of kernel functions.

Although under some mild conditions Gaussian processes yield the correct

solution as the size of data tends to infinity [122], the rate of convergence is

highly dependent on the suitability of the kernel function.

In the case of Gaussian process function approximation outlined in Sec-

tion 6.2.1, the kernel function parameters may be estimated by evidence

maximisation [37]. More specifically, if the kernel function is parameterised,

the kernel parameters, also called the hyper-parameters, can be estimated

from data in such a way that they represent the correlation that occurs in

the data. This approach can be extended for the case of Gaussian process

reinforcement learning in the following way.

Let Bt = [(b0, a0), . . . , (bt, at)]T be a sequence of belief state and action

pairs for a dialogue of length t generated with policy π. Assume that the Q-

function for policy π is a Gaussian processQπ(b, a) ∼ GP (0, k((b, a), (b, a); Θ))

with hyper-parameters Θ. The prior distribution of the Q-function in be-

lief state-action pairs Bt, q
π
t = [Qπ(b0, a0), . . . , Qπ(bt, at)]T, is a zero-mean

multivariate Gaussian distribution with covariance matrix being the Gram

matrix that depends on Θ:

qπ
t |Bt ∼ N(0,Kt(Θ)). (6.12)

The Q-function residual in belief state-action pairs Bt, labelled ∆qπ
t

(Eq. 6.9d) is simply

∆qπ
t |Bt ∼ N(0, σ2I). (6.13)

If rt are the observed rewards in belief state-action pairsBt, from Eq. 6.9a

and Eq. 6.13 the likelihood of that observation is:

rt|q
π
t ,Bt ∼ N(Htq

π
t , σ

2HtH
T

t ) (6.14)

The marginal likelihood is obtained by integrating out qπ
t :

p(rt|Bt) =

∫
p(rt|q

π
t ,Bt)p(q

π
t |Bt)dq

π
t , (6.15)

which is a convolution of two multivariate Gaussian distributions and yields
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a multivariate Gaussian distribution:

rt|Bt ∼ N(0,Ht(Kt(Θ) + σ2I)HT

t ). (6.16)

Using a data corpus that is labelled with belief state-action pairs Bt
1 and

rewards rt, the parameters {Θ, σ} can found by maximising the marginal

likelihood. The solutions are however only local optima, and represent dif-

ferent interpretations of the correlations that occur in data.

6.2.4 Sparse approximation of Gaussian processes

Due to the matrix inversion in Eq. 6.2, the computational complexity of a

Gaussian process regression is O(t3), where t is the number of data points.

In the case of a dialogue system, the number of points used for estimation

will be equal to the total number of turns, summed over all dialogues. This

poses a serious potential computational problem, since the number can be

very large. Only considering a subset of the data points and discarding the

rest is not sufficient for the Q-function to be adequately estimated even for

a discrete space MDP. This is exacerbated if the space is continuous (like

here), as the same state is never visited twice. It is therefore important

to take into account the contribution each part of the belief state space

brings to the final estimation. For this reason, a sparse approximation of

Gaussian processes is needed. This should, on one hand, ensure that all

the data points are taken into account, and, on the other hand, reduce

the computational complexity. This section explains the Fully Independent

Training Conditional methods and the kernel span sparsification method.

The cubic increase in complexity with the number of visited belief states

is the Achilles’ heel of Gaussian process regression. Significant research

effort has been invested into solving this problem, and a number of methods

have been developed [123]. One particularly good approach is the Fully

Independent Training Conditional (FITC) algorithm2 [124]. The main idea

behind this approach is to assume that the function values at the data

points are conditionally independent, given some set of support points. The

likelihood can then be approximated with a Gaussian distribution that has a

diagonal covariance matrix. This reduces the computational effort required

1Note that this is obtained automatically in the process of belief update.
2Originally named Sparse Gaussian Process using Pseudo-inputs (SGPP).
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to calculate the covariance matrix of the posterior from O(t3) to O(tm2),

where m is the number of support points. If the number of support points is

significantly smaller than the number of data points, this approach is very

effective for reducing the computational cost. The main problem of this

approach, however, is to find a suitable way of selecting the support points.

The set of support points is typically chosen using some heuristics to

select a small subset of the data points. It is also possible to select the subset

using a probabilistic approach, e.g., by maximising the marginal likelihood.

However, both of these methods assume that a large set of training points

is available. This restricts them to cases where the data points are available

from the outset, as is the case in off-line methods, but not normally in on-line

methods.

An alternative algorithm which approximates the Gaussian process with-

out first obtaining a set of support points is the kernel span sparsification

method described in [125]. As it visits the belief state space, it keeps track of

only a small subset of the visited points, which are used to approximate the

kernel function in such a way that the overall computational complexity can

be reduced. Chapter 8 will give some suggestions for how this algorithm can

be extended to provide a set of support points so that the FITC algorithm

can be used online.

A kernel function can be thought of as a dot product of a (potentially

infinite) set of feature functions k((b, a), (b, a)) = 〈φ(b, a),φ(b, a)〉 where

φ(b, a) is the vector of feature functions [φ1(b, a), φ2(b, a), . . .]
T. Any linear

combination of feature vectors {φ(b0, a0), . . . ,φ(bt, at)} for a given set of

points {(b0, a0), . . . , (bt, at)} is called the kernel span. The aim is to find

the subset of points that approximates the kernel span. These points are

called the representative points and the set of representative points is called

the dictionary D = {(b̃0, ã0), . . . , (b̃m, ãm)}.

The sparsification parameter ν places a threshold on the squared distance

between the feature function span at the representative points, and the true

feature function value at each visited point. Every time the threshold is

exceeded, a new point is added to the dictionary. If (bt, at) is the current

data point then:

min
gt

‖
m∑

j=0

gtjφ(b̃
j , ãj)− φ(bt, at) ‖2≤ ν, (6.17)

123



6. Gaussian processes for fast policy optimisation

where gt = [gt1, . . . , gtj ] is a vector of coefficients and m is the size of the

current dictionary, D = {(b̃0, ã0), . . . , (b̃m, ãm)}. It can be shown [125] that

this is equivalent to:

min
gt

(
k((bt, at), (bt, at))− k̃t−1(b

t, at)Tgt

)
≤ ν, (6.18)

where k̃t−1(b
t, at) = [k((bt, at), (b̃0, ã0)), . . . , k((bt, at), (b̃m, ãm))]T. It can

also be shown that the expression on the left side of Eq. 6.18 is minimised

when gt = K̃−1
t−1k̃t−1(b

t, at), where K̃t−1 is the Gram matrix of the current

set of representative points. If the threshold ν is exceeded then (bt, at)

is added to the dictionary, otherwise the dictionary stays the same. This

constitutes the sparsification criteria and allows for approximation of the

posterior in complexity in the following way.

Since the kernel function is the dot product of the feature functions, the

Gram matrix isKt = ΦT
t Φt whereΦt = [φ(b0, a0), . . . ,φ(bt, at)]. Then, the

feature function values for each point are approximated as the linear combi-

nation of the representative points φ(bi, ai) ≈
∑m

j=1 gijφ(b̃
j , ãj), for all i ∈

0, . . . , t. Also, the Gram matrix is approximated as Kt = ΦT
t Φt ≈ GtK̃tG

T
t ,

where Gt = [g1, . . . ,gt]. In a similar manner, kt(b, a) ≈ Gtk̃t(b, a). This

allows for the posterior (Eq. 6.10)to be approximated:

Q(b, a)|Bt, rt ∼ N

(
Q̃(b, a), c̃ov((b, a), (b, a))

)
,

Q̃(b, a) = k̃t(b, a)
T(H̃T

t (H̃tK̃tH̃
T

t + σ2H̃tH̃
T

t )
−1rt),

c̃ov((b, a), (b, a)) = k((b, a), (b, a))

− k̃t(b, a)
T(H̃T

t (H̃tK̃tH̃
T

t + σ2H̃tH̃
T

t )
−1H̃t)k̃t(b, a),

(6.19)

where H̃t = HtGt. It can be shown that this reduces the complexity to

O(tm2), where m is the number of representative points.

This sparsification method can be effectively utilised in an on-line algo-

rithm where the data is obtained sequentially. As can be seen from Algo-

rithm 8, the process starts with just one data point which constitutes the

initial dictionary. Every time a new data point is encountered, a vector of

kernels between the current dictionary points and the new point is calcu-

lated. The linear combination of the vectors of the feature functions at the

current dictionary points that is the closest to the vector of the feature func-
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tions at the new data point is then computed. If the sparsification threshold

is exceeded, the new data point is added to the dictionary with all coeffi-

cients set to zero, except for the last one which corresponds to the newly

added dictionary element.

Algorithm 8 On-line kernel span sparsification algorithm

1: Initialise D ← {(b, a)}, m ← 1, K̃−1 ← [1/k((b, a), (b, a))],G ← [1],
t← 0

2: repeat

3: t← t+ 1
4: Get new belief state-action pair (b′, a′)
5: Compute k̃(b′, a′)
6: g← K̃−1k̃(b′, a′)
7: δ ← k((b′, a′), (b′, a′))− k̃(b′, a′)Tg
8: if δ ≥ ν then

9: D← {(b′, a′)} ∪D

10: Recompute K̃−1

11: m← m+ 1

12: G←

[
G z

zT 1

]

13: else

14: G←

[
G

gT

]

15: end if

16: until t == T

This sparsification method turns a non-parametric method into a para-

metric method. More precisely, the kernel is now approximated using only a

limited number of points, which is equivalent to defining a functional basis

for the kernel function, and defining the kernel to be a finite linear combi-

nation of that basis which can be shown to be equivalent to parameterising

the Q-function [120]. This may limit the accuracy of the solution since the

method finds the optimal solution only within the span of the kernel basis

functions. However, the fact that the basis is chosen dynamically still allows

for more appropriate functions than when using a fixed basis.

One advantage of the approach is that it enables non-positive definite

kernel functions to be used in the approximation. This is due to the fact

that the sparsification method essentially changes the kernel function in a

manner which ensures that the approximated Gram matrix is positive def-

inite. According to [126], this is sufficient to guarantee that the model
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remains well-defined. What is more, using a sparse approximation some-

times yields better results than the full Gaussian process model since the

approximated kernel function might suit the task better than the original

kernel function [127].

When using this approximation technique, even though the algorithm

approximates a Gaussian process model, the result may not be a Gaus-

sian process model itself. This poses a potential issue since there is no

guarantee that the covariance in the Eq. 6.19 is positive. However, this

can be easily amended by replacing k((b, a), (b, a)) in the Eq. 6.19 with

k̃t(b, a)
TK̃−1

t k̃t(b, a) and the covariance of the posterior becomes:

c̃ov((b, a), (b, a)) = k̃t(b, a)
T(K̃−1

t −H̃
T

t (H̃tK̃tH̃
T

t +σ2H̃tH̃
T

t )
−1H̃t)k̃t(b, a).

(6.20)

In this way, the kernel function is not only approximated at the places

which are necessary to keep the computational cost down (such as the com-

puting inverse of the Gram matrix), but it is replaced with its approximation

wherever it appears in Eq. 6.10.

Thus, the original Gaussian process is approximated with another Gaus-

sian process where the kernel function is in a form which allows for the

inverse of the Gram matrix to be calculated in a more efficient way. This

ensures that the GP model for the Q-function remains well-defined.

The only downside is that sometimes these approximations can lead to

an overly confident estimate [123]. In order to alleviate this, in the set-up

that will be used here the estimate of the variance from Eq. 6.19 will be

used as long as it gives a positive value, otherwise Eq. 6.20 will be used.

6.2.5 GP-Sarsa

The previous section has shown how the Q-function Qπ for some policy π

can be modelled as a Gaussian process (see Eq. 6.19). This requires that a

kernel over both belief state and action spaces is defined. If the action space

A is discrete, the kernel function can be composed of a kernel over belief

states and a kernel over actions, kB×A((b, a), (b
′, a′)) = kB(b,b

′)kA(a, a
′).

This allows for kB(b,b
′) to be chosen from a set of standard kernel functions

for continuous spaces and kA(a, a
′) from a set of standard kernel functions

for discrete spaces, which makes the task of selecting a kernel easier1.

1Refer to [37] for a list of standard kernel functions for different input spaces.
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6.2 Gaussian process reinforcement learning

The GP-Sarsa algorithm estimates the optimal Q-function by modelling

it as a Gaussian process and updating the posterior after each quintuple

(b(st), at, rt, b(st+1), at+1) is observed, where actions are taken ǫ-greedily [120].

This relates to the original Sarsa for step size parameter λ = 1 (see Algo-

rithm 4 in Section 2.2.1). In the Bayesian framework, instead of using a step

size parameter, the underlying distribution controls how much each reward

observation should contribute to the function estimate, based on how likely

the particular reward observation is.

The sequential nature of on-line learning allows for a more efficient cal-

culation of the matrix inversion in Eq. 6.19. A full description of this is

given in Algorithm 9 in Appendix D.1.

6.2.6 Active learning in Gaussian process reinforcement learn-

ing

Active learning is a machine learning method for efficient data selection [128,

129]. The main idea behind active learning is to select only the data points

that contribute the most to the estimate. In this way it can reduce the cost

of data labelling or speed up the learning process, depending on the appli-

cation. Instead of random data selection, active learning selects data points

according to some utility function. Although it is capable of accelerating

the learning process, active learning suffers from an intrinsic problem called

the sampling bias [130]. More specifically, when data points are selected

at random they accurately represent the distribution. However, once they

are chosen according to some utility function they are biased towards the

heuristics that the function encodes, which may lead to inconsistencies in

the estimation.

In on-line reinforcement learning one of the main issues is the exploration-

exploitation trade-off. ǫ-greedy learning normally requires random explo-

ration with probability ǫ (Section 2.2.1). However, such random exploration

can be inefficient as not all parts of the space are equally informative when

it comes to the Q-function approximation. Therefore, adopting an active

learning approach to exploration could yield a significant improvement in

the speed of learning. The utility function normally includes a measure of

the information gain [128], through which various heuristics can be incorpo-

rated. What is particularly appealing about Gaussian process reinforcement

learning is that it provides a measure of uncertainty at each point of the
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space. This can then be used directly in the active learning utility func-

tion [118]. This enables the model to explore the parts of the space it is less

certain about.

Active learning was previously used in POMDP dialogue management as

a way of selecting meta-queries efficiently [131]. Meta-queries are a special

type of actions that the system can take in order to ask the user directly

whether taking a particular action is good. This may be important in cir-

cumstances of high uncertainty and when taking a different action may be

risky. In order to minimise the risk and at the same time minimise the

number of times the meta-queries were asked, active learning was applied.

On average, it showed better performance than alternative methods.

Here, active learning was used for more efficient exploration. During

exploration, actions are chosen based on the variance of the GP estimate

for the Q-function and during exploitation, actions are chosen based on the

mean:

a =

{
argmaxaQ(b, a) with probability 1− ǫ, exploitation

argmaxa cov ((b, a), (b, a)) with probability ǫ, exploration

(6.21)

6.3 Gaussian process RL on a toy problem

In order to demonstrate how this methodology can be applied to a dia-

logue system, the idea is first illustrated by a simple problem, the VoiceMail

dialogue task [70].

6.3.1 VoiceMail dialogue task

The state space of the VoiceMail task consists of three states: the user asked

for the message to either be saved or deleted, or the dialogue ended. The

system can take three actions: ask the user what to do, save the message or

delete the message. Transitions to the final state are deterministic depending

on whether the user ended the call or the system saved or deleted a message.

However, the observation of what the user wants is corrupted with noise,

and the system therefore receives an input that does not always correlate

exactly with what the user intended. For that reason, under the POMDP

framework, the probability of each state is estimated in every dialogue turn.
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In both learning and evaluation, a simulated user is used which makes

errors with probability 0.3, and terminates the dialogue after at most 10

turns. It assigns a positive reward of 10 in the final state if the system

has performed a correct action, otherwise it gets a penalty of −100. Each

intermediate state receives a reward of −1. In order to keep the problem

simple, a model defining transition and observation probabilities is assumed

so that the belief can be updated easily. The actual policy optimisation,

however is performed in an on-line fashion.

6.3.2 Choosing a kernel for the VoiceMail task

Choosing a kernel function for a particular task requires knowledge about

the correlations in the Q-function. Not every function of two belief states

is a valid kernel function so choosing the right kernel function is a difficult

task in itself. The intention here, however, was not to examine which kernel

is best suited for a particular dialogue task, but instead to examine the

potential of GP-Sarsa to speed up the learning process when compared to

the Monte Carlo control algorithm, a standard non-parametric algorithm.

Therefore, only a small number of kernel functions were compared. For

the VoiceMail task this includes two standard kernel functions and a kernel

function that was specially constructed for this task.

The polynomial kernel function is defined as:

k(b,b′;σ0, p) = (〈b,b′〉+ σ2
0)

p, (6.22)

where 〈·, ·〉 is the dot-product, with hyper-parameters σ0 >= 0 and p > 0.

If σ0 is zero this is the homogeneous polynomial kernel and in the case p = 1

and σ0 = 0 this is the linear kernel.

A parametrisation of the linear kernel that places varying relevance on

different elements of the belief state is:

k(b,b′; ρ1, . . . , ρ|S|) =

|S|∑

i=1

bib
′
i

ρ2i
(6.23)

where hyper-parameter ρi determines the relevance of the ith element of the

belief state vector b; the larger this value is the less relevant that element

is. If these hyper-parameters are optimised, this kernel is called linear with

automatic relevance determination [132].
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The Gaussian kernel function1 is defined as:

k(b,b′; p, σk) = p2 exp

(
−
‖b− b′‖2

2σ2
k

)
, (6.24)

where σk determines how close the points have to be for the values of the

function to be correlated, and p defines the prior variance at each data point

since k(b,b) = p2. The main advantage of the Gaussian kernel over the

polynomial kernel is that it is a dot product of an infinite vector of features

functions [37] which gives it the potential to model covariances better. On

the other hand, while the polynomial kernel is non-stationary, the Gaussian

kernel is a stationary kernel. This means that that the covariances only

depend on the distance between two belief states rather than on the part of

the space where the two belief states are.

The algorithm for hyper-parameter optimisation of Gaussian process re-

gression in [133] was adapted to obtain the optimal hyper-parameters for

parametrised kernel functions of the GP model for Q-function using a dia-

logue corpus labelled with belief states, actions and rewards (Section 6.2.3).

The third kernel considered here is the scaled norm kernel defined as:

k(b,b′) = 1−
‖b− b′‖2

‖b‖2‖b′‖2
. (6.25)

This function is not positive definite and as such is not a valid kernel.

However, it can be used in combination with the kernel span sparsifica-

tion method, as discussed in Section 6.2.4. This function defines positive

correlations at the points that are close to each other, and negative corre-

lations otherwise. This is particularly useful for the VoiceMail task, where,

if two belief states are very different, taking the same action in these belief

states generates a negatively correlated return. For example, assume that

one knows the value of the Q-function corresponding to the delete action

when there is a high probability that the user wants it to be deleted. It is

then reasonable to assume that taking the delete action when there is a high

probability that the user wants the message to be saved will be negatively

correlated with that (known) Q-value. Thus, during the process of learning,

experiencing the case where the system deletes when there is a high proba-

1Also called the squared exponential kernel function in the literature.
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bility that the user wants the message to be deleted also gives an estimate of

the Q-function and an associated uncertainty for the case when there is low

probability that the user wants the message to be deleted and the system

takes the delete action, without actually experiencing that case.

The kernel function can also be defined over discrete variables. A simple

example of such a kernel is the δ kernel [134], which is used here to define a

kernel over actions:

k(a, a′) = 1− δa(a
′), (6.26)

where δa is the Kronecker delta function.

6.3.3 Training set-up and evaluation on VoiceMail

In order to assess the performance of GP-Sarsa, it was compared to the

standard grid-based Monte Carlo control algorithm1 (Algorithm 2, Sec-

tion 2.2.1). The policies were trained in interaction with a simulated user.

The intention was not only to test which algorithm for optimising the

Q-function on-line yields the best policy performance, but also to examine

the rate of convergence to the optimal policy. Since the underlying transi-

tion and observation probabilities are known and the action space, the state

space and the observation space are small, it is possible to find the opti-

mal policy in an off-line fashion without any approximations. The optimal

policy was obtained using the POMDP solver toolkit [135]. This toolkit

implements the Value iteration algorithm to solve the POMDP off-line (as

outlined in Section 2.2.5). Then, that policy was used to generate 300 di-

alogues in interaction with the simulated user. These dialogues served as

data to optimise the kernel hyper-parameters.

All the algorithms use an ǫ-greedy approach where the exploration rate

ǫ was fixed at 0.1. The learning process depends greatly on the actions that

are taken during exploration. If early on during the training process due to a

fortunate choice of actions, the system discovers a path that generates high

rewards, then convergence is reached sooner. Therefore, the learning process

itself is a random process. In order to mitigate against this, the following

procedure is adopted. For every training set-up, exactly the same number

of training iterations were performed using 1000 different random generator

1A grid-based Sarsa algorithm (Algorithm 4, Section 2.2.1) was also examined within
two dialogue domains, but it exhibited inconsistency in convergence and sensitivity to the
choice of the step-size parameter.
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seedings. After every 20 dialogues the resulting 1000 partially optimised

policies were evaluated. Each of them was tested on 1000 dialogues. The

average reward of these 1000 dialogues provides just one point in Fig. 6.1,

which shows the learning progress.
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Figure 6.1: Evaluation results on the VoiceMail task.

The grid-based Monte Carlo control algorithm used a Euclidean distance

to generate the grid by adding every point that was further than 0.01 from

other points since that one may be considered representative of a new region.

As can be seen from Fig 6.1, the grid-based Monte Carlo control algorithm

has a relatively slow convergence rate.

For GP-Sarsa the noise variance of the residual σ (see Section 6.2.2) was

hand-tuned at 1.0, except in the case of the Gaussian kernel, where it was

optimised along with the other parameters. The sparsification threshold ν

(Section 6.2.4) was set to 0.01. From Fig. 6.1, the linear kernel (Eq. 6.22)

exhibited a learning rate similar to the Monte Carlo control algorithm in

the first 300 training dialogues, but thereafter learnt somewhat faster. A

non-homogeneous second order polynomial was also examined (σ0 = 1 and

p = 2). However its ability to model covariances is only marginally better

than the linear kernel. The linear kernel with automatic relevance determi-

nation (ARD) from Eq. 6.23, performs slightly better in the early stages of

the learning process. The Gaussian kernel, however, with optimised hyper-
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6.3 Gaussian process RL on a toy problem

parameters (p = 5.48, σk = 0.5) and a learnt parameter for the noise residual

(σ = 14.12) achieves a much faster learning rate. The best performance was

obtained using the kernel from Eq. 6.25. Not only did it achieve close to

optimal performance in 400 dialogues, but its convergence rate was higher

in comparison with the other methods.

The Q-value functions found by GP-Sarsa with the scaled norm kernel

and the POMDP solver are presented in Fig. 6.2 and Fig. 6.3, respectively.

GP-Sarsa did not estimate the optimal Q-value function very well and the

error bars suggest an overly confident approximation. This might be a result

of the sparsification process, since sparse approximation methods can lead

to overly confident estimates [123]. However, it was able to yield better

approximations of the optimal Q-values at the points where the Q-value

function associated with one action intersects with the Q-value function

associated with another action. This corresponds to one action having higher

expected return than the other in that part of the belief space, which is

precisely what is important in policy optimisation.
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Figure 6.2: Approximated Q-value function using GP-Sarsa with scaled
norm kernel. The grey area indicates a 95% confidence interval.
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Figure 6.3: Upper envelope of optimal Q-value function using POMDP
solver.

6.4 Gaussian process RL on a real-world task in

the HIS dialogue manager

The results on the toy problem presented above suggest that applying Gaus-

sian processes to reinforcement learning can speed up policy optimisation.

In order to verify this result on a real-world task, the Hidden Information

State dialogue manager was extended to incorporate GP-Sarsa, and the ex-

periments were carried out in the CamInfo domain (Section C.1). For each

experiment, the policy was trained and evaluated in interaction with the

agenda-based simulated user as described in Section 3.4.

6.4.1 Choosing a kernel for the CamInfo task

Performing learning on the belief state space removes the need for defining

a summary space as well as the heuristics for mapping back from summary

to master space, hence enabling the dialogue manager to learn the full scope

of behaviour. However, it requires a kernel function to be defined over belief

state space, which, in the case of the HIS system, requires a kernel that

can be defined over trees. An example of such a kernel is given in [136].

However, directly applying such a kernel is not possible since the partitions
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are trees of variable depth. In addition, the size of the belief state vector

varies so that a variant of rational kernels [137] may be required. These

techniques are outside the scope of this thesis and will be left for future

work. For the purpose here, which is mainly to show contrasts between

different algorithms, the summary space is sufficiently complex.

In contrast to the summary space defined in Section 3.3.5, the summary

state used here is four dimensional. This is one dimension less than the space

used there because intermediate experimentation showed that the hypothesis

status (defined in Table 3.5 in Section 3.3.3) did not contribute significantly

to the policy optimisation process. The hypothesis status is a compressed

form of the grounding information associated with a given hypothesis. Since

the mapping from summary to master space (Section 3.3.5) already makes

use of the grounding information when constructing the system’s dialogue

act from the summary action, the hypothesis status is redundant in the

summary space. Note that the summary space used here consists of two el-

ements that are continuous (the probability of the top two hypotheses) and

two discrete elements – the partition status, which relates to the portion of

the database entries that matches the top partition, and the last user action

type associated with the top hypothesis. The summary action space is dis-

crete, consisting of eleven elements as defined in Table 3.6 in Section 3.3.5.

While it would be desirable to extend both the summary state and the sum-

mary action state space this would require a drastic change in the mapping

from the summary to the master space. This mapping is based on heuristics

and its implementation design goes beyond topic of this thesis.

In order to apply the GP-Sarsa algorithm, a kernel function needs to

be specified for both the summary state space and the summary action

space (see Section 6.2.5). The nature of this space is quite different from the

one in the toy problem, with the main difference being the use of the mas-

ter to summary space mapping. Intermediate experimentation showed that

applying a kernel that has negative correlations, such as the one in Eq. 6.25,

does not yield good results. The reason for this may lie in the summary to

master space mapping. For a given summary action, the mapping proce-

dure finds the most appropriate action to perform if such an action exists.

This can lead to a lower reward if the summary action is not adequate, but

would rarely lead to negatively correlated rewards. In this way, the heuris-

tics in the summary to master space mapping alleviate the effect of taking
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inadequate summary actions. Furthermore, hand-tuning the parameters of

the Gaussian kernel (Eq. 6.24) against average reward did not produce good

results. Polynomial kernels (Eq. 6.22) assume that the elements of the space

are features. Due to the manner in which the probability is maintained over

this very large state-space, the continuous variables may potentially encode

more information than in the simple toy problem. For example, different

partitioning of the user goal leads to different probabilities of the top hy-

pothesis which may be useful information for action selection. Both linear

and second order polynomial kernels were therefore examined. For discrete

features of the summary space, the δ-kernel was used (Eq. 6.26).

The sparsification threshold ν was hand-tuned to 0.35 to ensure that the

number of elements in the dictionary remained low. The noise parameter

σ was fixed at 2.5. As defined in Section 6.2.2, σ is the variance of the

residual, ∆Q. From Eq. 6.6 it can be seen that σ directly relates to how

much variability is expected in the return. In contrast to the toy problem,

the optimisation process here operates in a summary space, so the return

naturally exhibits more variability. For example, if one return is associated

with one belief point and another return with another belief point and if

these belief points are mapped to the same summary point, the return as-

sociated with that summary point will vary. The return also varies due to

the complexity of the problem, especially in the beginning of the learning

process.

6.4.2 Training set-up and evaluation on CamInfo

In training and testing, the agenda-based user simulator had the same pa-

rameter set-up as defined in Section 3.4.2. The reward function gave a

reward of 20 for successful dialogues, the exploration factor was 0.1 and the

discount factor was 0.95. Only training on zero error rate was considered,

since it is easier to observe the policy performance improvement during op-

timisation if there are no changes in the training conditions and no noise is

introduced.

The extended grid-based Monte Carlo control algorithm (Algorithm 7 in

Section 5.4) provided the baseline method for testing the speed of learning.

The Euclidian distance metric was used to generate the grid (Section 3.3.5)

and the threshold was set to 0.35. An intermediate examination showed that

using a threshold of 0.01 as in Section 3.4.3 yields a slow convergence rate,
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so the threshold was increased to provide a better baseline. In addition,

the GP-Sarsa algorithm was augmented to make use of the N-best back-off

strategy of dealing with the invalid summary actions (Section 5.4) in order

to establish a fair comparison.

To measure the rate at which each algorithm learns, while at the same

time minimising the effect of randomness during learning, a similar evalua-

tion set-up to the one presented in Section 6.3.3 was adopted. The training

was performed 1000 times, each with a different random seeding. After

every 200 dialogues each of the 1000 partially optimised policies was evalu-

ated on 1000 dialogues. The averaged reward and success rates are shown

in Figs. 6.4 and 6.5 respectively.
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Figure 6.4: Evaluation results on CamInfo task – reward.

The results show that during the first 3000 dialogues, the GP-based

method learns much faster than the Monte Carlo control algorithm. While

the second-order polynomial kernel performed worse than the linear kernel

at the early stages of learning, it obtained a higher average reward after

1000 dialogues. The second-order polynomial kernel results in a more com-

plex Gaussian Process model, so it may only model correlations well once

the policy reaches a certain performance level. Previous research has shown

that changing kernel parameters on-line during learning yields better per-

formance [138]. In the same way, different kernel functions may be better
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Figure 6.5: Evaluation results on CamInfo task – success.

suited for different stages of learning.

Also, active learning was applied to both GP-Sarsa with a linear kernel

as well as with a second-order polynomial kernel. There, the actions are se-

lected during exploration based on the estimated uncertainty (see Eq. 6.21

in Section 6.2.6). In both cases, the results show accelerated learning during

the initial training phase. After performing many iterations in an incremen-

tal noise configuration (Section 3.4.3) both the GP-Sarsa and the grid-based

Monte Carlo algorithms converge to the same performance.

Not only did GP-Sarsa have a faster learning rate at the beginning of

training, but the success rates and the rewards that it generates suggest

that it could potentially be used as a method for on-line learning in direct

interaction with real users. There are two main reasons why standard RL

algorithms are not normally used to train the policy in direct interaction

with real people. First, they need a large number of dialogues and second,

the policy performance in the early stages of learning is so poor that it is

not considered acceptable for interaction with real people. Here however,

the success rate surpasses 85% after only 200 dialogues, which suggests that

GP-Sarsa is able to overcome these problems.
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6.5 Summary

This chapter has described how Gaussian processes in reinforcement learning

can be applied successfully to dialogue management. The main motivations

for using Gaussian processes for reinforcement learning in a POMDP dia-

logue manager are to speed up the learning process and to model the uncer-

tainty of the estimates. Various aspects of Gaussian process reinforcement

learning have been discussed, such as the choice of kernel function, sparse

approximations of Gaussian processes, and the use of active learning for effi-

cient exploration of the summary space. GP-Sarsa was implemented on a toy

dialogue problem and the use of different kernel functions was investigated,

showing that fast convergence can be achieved. It was also demonstrated

how kernel hyper-parameters, used for on-line policy optimisation, can be

learnt from a dialogue corpus, thus creating a bridge between supervised

and reinforcement learning methods in dialogue management. GP-Sarsa

was also applied to a real-world dialogue task showing that, on average, this

method is able to learn much faster than a grid-based algorithm and that

an active learning setting can further accelerate policy optimisation reaching

more than 85% success rate after only 200 dialogues.

This does not only show that the GP-Sarsa is able to learn faster, but

also that it also allows more aspects of the dialogue management behaviour

to be learned. This means that given an suitable kernel the learning can

be performed directly on the full belief space. However, this remains to be

investigated.

Another important aspect of kernel selection is the optimisation of the

kernel hyper-parameters. Estimating them from a dialogue corpus for a

real-task is a part of future work.

The Gaussian process model does not only provide a probabilistic frame-

work for fast policy optimisation but can also be used for policy adaptation

to different users. The next chapter will examine how the uncertainty mea-

sure that the Gaussian process is estimating can be utilised for this purpose.
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Chapter 7

Adaptation to different user

types

7.1 Introduction

In this chapter, strategies for adaptation to different user types are stud-

ied in the context of Gaussian process reinforcement learning for dialogue

management as introduced in the previous chapter, where the Q-function

is modelled as a Gaussian process. The chapter starts with a discussion of

the different approaches to adaptation in dialogue management. A short-

term adaptation strategy that uses uncertainty estimates from a Gaussian

process is presented in Section 7.3. In Section 7.4, a description of the user

simulator that is able to simulate different user types is given. Then, in

Section 7.5 evaluation results on the Hidden Information State system are

presented. Section 7.6 investigates the differences in performances between

a policy trained on several users and tested on a particular user and the

adaptation to that particular user. A summary of the chapter with the

main conclusions is given in Section 7.7.

7.2 Approaches to adaptation in dialogue manage-

ment

In dialogue management, adaptation can be viewed as a process of improv-

ing the action selection on a different condition to the one the policy was

originally trained on. For example, if the policy is trained on a simulated
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user and then adapted to a real user. Another example is a policy that is

trained for an expert user and is then adapted to a näıve user. Adapta-

tion is supervised if either the true user actions or the rewards are known.

Otherwise, the adaptation is unsupervised.

While adaptation has been extensively studied in speech recognition (see

an overview in [28]), in spoken dialogue systems it is still relatively novel and

covers a wide range of possible research topics [59, 139, 140, 141]. Broadly,

adaptation approaches in spoken dialogue systems can be divided into long-

term adaptation, when adaptation takes place only after a number of dia-

logues, and short-term adaptation, where adaptation takes place within a

single dialogue.

Reinforcement learning in principle provides a mechanism for long-term,

supervised adaptation. For example, if the estimate of the reward during

human-computer interaction is available, the system can re-estimate the Q-

function, over time leading to a better dialogue policy. In this way, the

policy trained with the simulated user can be further improved in direct

interaction with real users. Long-term adaptation is also useful to adapt

to a single user in such applications where it is expected that the same

user will have multiple interactions with the system. Long-term adaptation,

however, requires a reward to be associated with every dialogue during run-

time. That estimate of the reward should ideally be obtained directly from

the user. One way of achieving this is for the user to give a rating at the end

of each dialogue. However, it has previously been shown that the perception

of dialogue success varies greatly between different users [58]. Therefore,

obtaining the reward directly from the user remains a challenge and will be

discussed further in Chapter 8.

An alternative way to perform long-term supervised adaptation is to

learn from a corpus of dialogues generated from the system’s interaction

with real users or a particular user. This requires some form of labelling. For

instance, data labelled with the true user act can be used to re-estimate the

observation and the transition probabilities of the POMDP dialogue model.

This approach was explored in the Bayesian Update of Dialogue State system

(see Section 2.5 and [73]), showing an improvement in performance. If the

label of the true user act was given, the true user goal can be inferred. Based

on that, the reward can be assigned to each dialogue turn [94]. This can

then be used, for example, to estimate the kernel parameters of the Gaussian
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7.3 Policy selection based on the Gaussian process uncertainty

estimate

process model for the Q-function, as shown in Section 6.3.

Another important direction in adaptation concerns short-term, rapid

adaptation. Such an approach to adaptation is useful in dialogue system

applications where there is a small chance that the user will call again so

performing long term adaptation to that particular user would not yield

benefits. Instead, several policies can be trained off-line for different groups

of users – user types. Then, the policy that is most appropriate for a partic-

ular user that the system is interacting with can be selected on-line. Such an

approach enables adaptation within a single dialogue. The crucial element

here is the policy selection criterion. If the reward estimate is given or if the

true user action is known, short term adaptation is supervised. Then, the

choice of the systems action can be based on the likelihood of the observed

reward or the likelihood of the true user act. Another situation is when

neither the reward nor the true user action are known. Then, adaptation

is unsupervised. This adaptation approach will be examined further in this

chapter where the Q-function is modelled as a Gaussian processes.

7.3 Policy selection based on the Gaussian process

uncertainty estimate

The Gaussian process approximation for the Q-function presented in Sec-

tion 6.2.5 provides an estimate of the mean and the variance of the Q-

function for any belief state-action pair. The action that is chosen in the

action-selection process is the one that is associated with the highest esti-

mate of the mean for the current belief state.

If there are two Gaussian process models for the Q-function, trained for

two different user types for example, then, for the same belief state, these

two models can propose two different actions. The adaptation approach

presented here advocates that the action that corresponds to the model

which has a lower variance estimate for the Q-function in that action and

the current belief state is selected.

This model selection criterion can be interpreted as choosing the model

which is more certain about its estimate of the highest Q-value. The main

advantage of this approach is that it only uses the estimate of the uncer-

tainty that is already provided by the model to perform adaptation. This

is in contrast to the adaptation approach that was taken in [141] where the
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dialogue state was extended to include user-type specific elements.

This approach has been inspired by adaptation in speech recognition,

but it is important to note some major differences. In cluster adaptive

training [142], models are trained on clusters, for example, speakers. Then,

at run-time, after one pass of recognition, the model parameters for different

clusters are interpolated. The interpolation weights are chosen to maximise

the likelihood of the observation given the recognition hypothesis. These

weights yield the resulting model, which is then used for recognition. In

the case here, there are two Gaussian process models available, MI and ME,

which provide two different posterior estimates of the Q-function for any

belief state action pair:

MI :Q(b, a) ∼ GP
(
Q̄I(b, a), covI(b, a,b, a)

)
, (7.1)

ME :Q(b, a) ∼ GP
(
Q̄E(b, a), covE(b, a,b, a)

)
. (7.2)

At run-time, for the current state bt, each model proposes the action that

has the highest mean for that belief state (Eq. 6.11 in Section 6.2.1):

aMt = argmax
a

Q̄M(bt, a), (7.3)

whereM ∈ {MI,ME}. The likelihood of the mean given the model, p(Q̄M(bt, a
M
t )|M),

only depends on the variance covM(bt, a
M
t ,bt, a

M
t ). So selecting the model

based on variance can be seen as selecting the model which has a higher

likelihood for belief state bt in turn t when the action is chosen to maximise

the mean.

It is important to note that this is a heuristic. In fact, both action

selection and model selection can be based solely on the mean or solely on

the variance. However, in reinforcement learning, the action is chosen in

such way as to maximise the expected reward. In other words, it is not

chosen on the basis of how likely it is in a particular belief state but rather

on the estimated return it can generate in a particular belief state. On

the other hand, different models give different estimates of uncertainty for

the optimal action in a particular belief state. Therefore, it makes intuitive

sense to base the model selection criterion on the variance estimate.
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7.4 Different user types

Users can be categorised in multiple ways. The simplest one is the distinction

between a user that has had interaction with the system and a user that

has not. It is common in human-computer dialogue that if the user has

spoken to the system for long enough they learn which questions to ask

in order to solicit the answer from the system more quickly. Conversely,

first-time users typically have difficulties communicating their request to

the system and such dialogues often end up being unsuccessful. Being able

to adequately address both user categories is very important for successful

dialogue operation [141].

As explained in Section 3.4.2, the agenda-based user simulator enables

variability in behaviour, which is controlled with parameterised probability

distributions. Varying these parameters enables a range of different user

types to be created. Two different user types are examined here: one which

rarely expresses the full goal and is generally less co-operative, the inex-

perienced user, and another which fully specifies the request, immediately

corrects any mistake that the system made and fully answers the system’s

questions, the experienced user. The parameter settings for these user types

are given in Table 7.1. In addition, the agenda-based simulated user incor-

porates a patience level. In the set-up used here, the user ends the dialogue

once the system repeats the same action three times in a row.

In Table 7.2 an example dialogue with the experienced user is given. As

can be seen from this example, the experienced user immediately specifies

the full goal, hello(=coffeshop, pricerange=cheap, area=romsey) and changes

their mind when needed as in reqalts(pricerange=dontcare). In Table 7.3 an

example dialogue with the inexperienced user is given, where it is mainly the

system that is asking for information and guiding the user, with dialogue

acts such as request(task), request(area), reqmore().

7.5 Short-term adaptation evaluation results

To evaluate the proposed adaptation strategy, two Gaussian process models

were trained, one with an inexperienced user another with an experienced

user. The domain was the CamInfo task (Appendix C.1). The training set-

ups for both models were the same as in Section 3.4.1 with the exception
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Parameter Default Experienced Inexperienced

InformCombination 0.600 0.900 0.100
AddAttributeToReq 0.333 0.666 0.111
YesAfterReqmore 0.250 0.100 0.600
AffirmWithAgdItem 0.050 0.600 0.050
Greeting 0.500 0.700 0.300
ConstraintRelax 0.667 0.900 0.333
TellAboutChange 0.500 0.900 0.200
ByeOrStartOver 0.333 0.100 0.500
DealWithPending 0.500 0.900 0.300
AddEntityName 0.050 0.500 0.050
NoAttrWithDontcare 0.800 0.500 0.900
InformToConfirm 0.050 0.700 0.050
ReqAltsAfterEntRec1 0.143 0.143 0.143
ReqAltsAfterEntRec2 0.143 0.143 0.143
RequestResponce1 0.200 0.050 0.200
RequestResponce2 0.200 0.010 0.600
OverruleCorrection 0.100 0.010 0.700
CorrectingAct1 0.450 0.700 0.200
CorrectingAct2 0.400 0.200 0.100
ThankAck1 0.100 0.100 0.600
ThankAck2 0.100 0.100 0.300

Table 7.1: Parameter settings for experienced and inexperienced user types.

that the maximum reward was set to be +100. The reason for this is that the

interaction with the inexperienced user typically takes a larger number of

dialogue turns than with the experienced user. The increased reward enables

the system to engage in longer dialogues. The GP-Sarsa algorithm used the

linear kernel and the parameter setting was the same as in Section 6.4.1.

Training was performed in incremental noise (see Section 3.4.3) generated

with the uniform error model (see Section 3.4.2).

Based on the policy selection criterion presented in Section 7.3, the pol-

icy can be selected either at the beginning of dialogue, as soon as the first

input is received from the user, or after every dialogue turn. Both of these

strategies are examined here. The baseline strategy is just a random selec-

tion between the two policies, again either at the beginning of the dialogue

or after every dialogue turn.

Referring firstly to Fig. 7.1 which shows performance for the inexperi-

enced user, there were two trained policies, one trained on the experienced
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System hello()
User hello(=coffeeshop,pricerange=cheap,area=romsey)
System confirm(drinktype=coffeeshop,area=romsey)
User affirm()
System inform(name=none, type=placetodrink, drinktype=coffeeshop,

area=romsey, pricerange=cheap)
User reqalts(pricerange=dontcare)
System inform(name=“Cafe Adriatic”, type=placetodrink,

drinktype=coffeeshop, area=romsey, pricerange=expensive)
Usrer ack()
System inform(name=“Cafe Adriatic”,type=placetodrink,

drinktype=coffeeshop, pricerange=expensive, area=romsey)
User bye()

Table 7.2: Dialogue with an experienced user.

System hello()
User hello()
System request(task)
User inform(=museum)
System request(area)
User inform(area=fenditton)
System inform(name=“Taxi Gallery”, type=placetosee, seetype=museum,

area=fenditton)
User inform(pricerange=dontcare)
System reqmore()
User request(addr)
System inform(name=“Taxi Gallery”, addr=“38 Stanesfield Road”)
User thankyou()
System reqmore()
User request(phone)
System inform(name=“Taxi Gallery”, phone=“01223576017”)
User ack()
System reqmore()
User bye()

Table 7.3: Dialogue with an inexperienced user.
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(b) Adaptation to inexperienced user, success

Figure 7.1: Adaptation to inexperienced user, reward (a) and success (b).
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Figure 7.2: Adaptation to experienced user, reward (a) and success (b).
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7. Adaptation to different user types

user (wrong) and the other on the inexperienced user (true). There were

two random selections one which chooses a policy at the beginning of each

dialogue (average) and the other which chooses a policy at every dialogue

turn (random). Finally, two adaptation strategies were considered, one which

adapts at the beginning of the dialogue (immadp) and another which adapts

at every dialogue turn (adapt). Fig. 7.2 shows the performance for the ex-

perienced user with the roles of the two user types reversed.

As expected, the matching policies, i.e., the policies trained and tested

on the same user type perform best (denoted as true on Figs. 7.1 and 7.2),

while the mismatched policies, the policies trained on one user but tested

on the other (denoted as wrong) have the worst performance.

The results for the mismatched policy reveal significantly worse perfor-

mance when tested on the inexperienced user compared to the experienced

user, the difference between wrong and true in Fig. 7.1 and Fig. 7.2. Cor-

pus examination of the inexperienced user data shows that the majority

of dialogues end with the user losing patience. The reason for this is that

the inexperienced user is less co-operative than the experienced user. This

can be seen from the different settings for the parameters OverruleCorrection

and InformCombination in Table 7.1. Therefore, it is very difficult for the

experienced user policy to navigate the inexperienced user to the part of the

summary space where the user goal is defined, which is a prerequisite for

the dialogue to be successful. On the other hand, the policy trained with

the inexperienced user had visited parts of the space where the user goal is

not defined and is able to deal with such a situation. Conversely, the fact

that the experienced user is very likely to define the goal (see the Inform-

Combination parameter value) is an advantage as it quickly reaches the part

of the belief state space where the user goal is fully defined. In that case

even a policy trained on the inexperienced user type has a high chance of

success. Therefore, there is not such a dramatic drop in performance when

the inexperienced user policy is tested on the experienced user.

Whether the random selection between different policies is performed at

the turn level (random) or on the dialogue level (average) makes a significant

difference when testing on the inexperienced user (Fig. 7.1). The reason for

this lies mainly in the patience level. If the policy is chosen randomly at

the beginning of the dialogue then there is a 50% chance of choosing the

wrong policy. If the policy is chosen randomly at the turn level there is a
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50% chance that the system will take a correct action which then reduces the

possibility of the system repeating the same action three times consecutively

and the user losing patience.

The difference between performing adaptation on the turn level (adapted)

versus the dialogue level (immadp) is greatest when adapting to the experi-

enced user (Fig. 7.2). There, turn-level adaptation reaches close to optimal

performance at zero error rate. The only case when the uncertainty-based

adaptation does not perform well is when both of the users visit the same

part of the space frequently and have different optimal actions associated

with that part of the space. In the case of the experienced user in the

overlapping parts of the space, the inexperienced user policy proposes the

optimal action. In addition, it manages to detect the user type correctly in

other parts of the space so it achieves close to optimal performance. With

an increase in noise level, however, it is harder to detect the user type so

adaptation performance degrades.

The experienced and inexperienced user types may be regarded as some-

what extreme since they have been deliberately configured to be distinct.

To see whether or not the policies trained on these user types are in any

way atypical, they were also tested on the default user type (used elsewhere

in the thesis). The results are shown in Fig. 7.3. Both policies provide rea-

sonable performance, although the experienced policy is the best suggesting

that the default user type was more similar to the experienced user than the

inexperienced user. Note also that adaptation also works reasonably well

for the default user, especially at low error rates.

7.6 Training on both user types

The previous section has shown that the proposed adaptation strategy is able

to perform well. However, in order to examine the full value of adaptation,

the question that is posed is whether training a policy on both users yields a

good policy too or whether it is necessary to separate the user types during

the training and then adapt during the testing. This is directly related to the

differences between the experienced user policy and the inexperienced user

policy. There are two ways in which trained policies can behave differently.

Firstly, the policies may be trained in different parts of the state-action

space. Secondly, they may cover the same part of the space, but they have
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Figure 7.3: Evaluation on the default user, reward (a) and success (b).
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differing optimal actions in some states.

The experiments in this section compare the matching policy, the short-

term adaptation strategy from Section 7.3 and the policy that is trained on

both user types. The latter is a policy that is trained by choosing the user

type randomly at the beginning of each dialogue.

The evaluation results are given in Fig. 7.4 and Fig. 7.5. The results

show that the policy trained on both user types generalises well for the

experienced user (see Fig. 7.5). For the inexperienced user, the average

reward is lower (see Fig. 7.4(a)), but the average success is indistinguishable

(see Fig. 7.4(b)). In both cases it outperforms the adaptation strategy.

In order to explain this generalisation capability there are two aspects

that require further inspection. The first question is how different the Q-

estimates are for different user types in the same parts of the summary space;

the second question is how often different user types visit the same parts of

the summary space. GP-Sarsa defines a probability distribution for every

state-action pair, which makes it hard to directly investigate these issues.

Therefore, the ability of the policy trained on both user types to generalise

well was investigated using the Monte Carlo control (MCC) algorithm. As

already explained in Section 3.4.1, the Monte Carlo control algorithm gath-

ers visited grid-points, the summary points, and estimates the Q-function

in these points for each action and has an associated frequency of how of-

ten that state action pair is visited. This makes it easier to examine the

aforementioned issues.

The Monte Carlo control algorithm was used to train policies with the

experienced user, the inexperienced user and a policy for both user types.

The training set-up is the same as in Section 6.4.2 except that the maximum

reward given was +100 and the that training was performed in incremen-

tal noise (see Section 3.4.3) generated with the uniform error model (see

Section 3.4.2).

MCC
grid points

GP-Sarsa dic-
tionary points

Policy trained on experienced user 124 578
Policy trained on inexperienced user 131 713
Policy trained on both users 127 710

Table 7.4: Comparison of the number of policy points for different user
types.
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Figure 7.4: Generalisation to inexperienced user, reward (a) and success (b).
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Figure 7.5: Generalisation to experienced user, reward (a) and success (b).
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Table 7.4 gives a comparison of the number of points that the policies for

different user types consist of for both the Monte Carlo control algorithm

and the GP-Sarsa algorithm. Although the parameter ν that controls the

number of points was the same for all policies, it is important to note that the

number of GP-Sarsa points and the number of MCC points are not directly

comparable since they have different interpretations in these algorithms.

However, this table does give some insight into the differences between the

different user types. In the case of the GP-Sarsa algorithm, the policy

generated with the experienced user type has fewer representative points

than the policy trained on inexperienced user type or the policy trained on

both user types. This means that the experienced user covers a smaller part

of the space than the other user types. However, the number of grid-points

that the Monte Carlo control algorithm generates for the experienced user

type is not much smaller than for the other user types, which suggests that

the grid that this algorithm produces is relatively crude.

Closer examination of the Monte Carlo control grid points for different

user types revealed that they mostly coincide in the discrete features. The

discrete part of the summary space is non-Markovian and it roughly corre-

sponds to a dialogue turn. Since both user types generate the same dialogue

acts with varying probabilities, both of the policies’ summary points cover

the same discrete part of the summary space. However, the frequencies with

which different parts of the summary space are visited vary and this leads

to different Q-function estimates for these two user types. The estimates

are not trained well in places where frequencies are low. Conversely, for the

policy trained on both user types, these frequencies are high for all sum-

mary points. In principle, the estimate of the expected discounted reward

for the same part of the summary state is different for the experienced and

the inexperienced user. However, the reward function is fairly simplistic and

only incorporates the notion of success, which is the same for both users,

and the number of dialogue turns. Therefore, the estimate of the expected

discounted reward is consistently higher for the experienced user than the

inexperienced user in the same part of the summary space. So while the re-

wards are different, in every part of the space there exists an optimal action

which is the same for both user types. Thus, there is no conflicting be-

haviour which would prevent the policy trained on both users to generalise

well.
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In Tables 7.5 and 7.6, the performance of the Monte Carlo control al-

gorithm and that of the GP-Sarsa algorithm are directly compared. The

policies were trained on the experienced user, the inexperienced user and

both user types. The adaptation strategy that was examined in the MCC

algorithm is simply to choose the point from the two policies that is the

closest to the current point at run-time and is performed on the dialogue

turn level. The adaptation strategy for GP-Sarsa is uncertainty-based as

explained in Section 7.3 and is also performed on the dialogue turn level.

This is only a preliminary comparison. It is performed at zero error rate to

avoid the confusion that may arise from higher error rates thereby masking

the effects of adaptation.

Results on the inexperienced user (Table 7.5) show that both algorithms

achieved similar performance when trained on the inexperienced user type.

Also, the policies trained on both user types and tested on the inexperi-

enced user type (general) perform similarly for both algorithms. However,

the adaptation capability of GP-Sarsa is much greater than the Monte Carlo

control algorithm’s. The adaptation strategy of MCC does not take into ac-

count how often each part of the space was visited but simply approximates

the current point with the closest point in each of the two separately trained

policies. While MCC can be heuristically modified to take into account

the frequencies of grid-point occupation during training, GP-Sarsa incorpo-

rates this information elegantly via a Bayesian approach which maintains a

Gaussian distribution over the Q-function for every part of the continuous

space (see Eq. 6.10 in Section 6.2.2).

On the other hand, the performance of the Monte Carlo control algo-

rithm is better than the GP-Sarsa when testing on mis-matching user types.

The grid that the MCC generates is very crude and dilutes the effect of

differences between the user types. As already discussed above, modelling

these differences is not essential for good policy performance due to the lack

of conflicting rewards. Therefore, a crude grid can be seen as a generali-

sation across the continuous space which leads to a better performance on

different users.

These effects are not as dramatic when adapting to the experienced user

(Table 7.6), however they are still noticeable, particularly in the measure of

dialogue success.
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Reward (std. dev.) Success
MCC GP-Sarsa MCC GP-Sarsa

Matching policy 82.76 83.74 96.10 97.03
(0.79) (0.66)

Policy trained on both 82.04 79.43 95.90 96.97
(0.83) (0.69)

Adaptation 58.65 76.58 71.87 91.80

(1.58) (1.04)

Mismatched policy 28.65 11.35 41.60 23.40
(1.69) (0.43)

Table 7.5: Comparison of the MCC and the GP-Sarsa on adaptation to the
inexperienced user type, zero error rate.

Reward (std. dev.) Success
MCC GP-Sarsa MCC GP-Sarsa

Matching policy 94.39 93.36 99.53 99.00
(0.25) (0.37)

Policy trained on both 93.18 93.31 98.80 99.07
(0.41) (0.36)

Adaptation 89.21 92.47 95.03 98.13

(0.78) (0.49)

Mismatched policy 81.87 79.30 87.50 84.67
(1.17) (1.27)

Table 7.6: Comparison of the MCC and the GP-Sarsa on adaptation to the
experienced user type, zero error rate.
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7.7 Summary

In this chapter, a short-term adaptation strategy to different user types has

been examined. The key idea of the strategy is to select the policy associated

with the GP model that has the lowest uncertainty for the optimal action.

This adaptation strategy was evaluated using the HIS system in interaction

with an agenda-based user simulator which was parameterised to simulate

different user types.

The results have shown that the strategy significantly outperforms ran-

dom policy selection and also an alternative grid-based adaptation scheme,

demonstrating the capability of the Gaussian process model of theQ-function

to detect different user types.

However, the adaptation strategy was out-performed by a simple policy

trained on both user types. The reason why this policy generalises so well

across different user types is probably because the HIS summary space does

not preserve the Markov property of the full belief space. This results in

an overlap between those parts of the summary space visited by the differ-

ent user types. In addition, for the same parts of the summary space, the

estimate of the expected reward is consistently higher for the experienced

user than for the inexperienced user. There therefore exists an optimal

Q-function that is the same for both users. This explains why little discrim-

ination between the users’ behaviour is necessary to obtain a near optimal

policy. This is clearly a weakness of the HIS summary space and it may

be expected that when more discriminating statistical dialogue models are

developed, the full value of the Gaussian process approach for unsupervised

adaptation will become evident.
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Chapter 8

Conclusion

8.1 Thesis summary

This thesis has examined the challenges that present themselves when apply-

ing a partially observable Markov decision process-based dialogue manager

to a real-world task in the context of the Hidden Information State (HIS)

framework. Adopting a POMDP-based approach requires that a distribution

over all dialogue states, the belief state, is maintained through the dialogue.

This process is called the belief update. Action selection is based on the

belief state and is determined by the dialogue manager policy. The process

of learning the optimal policy is called policy optimisation. This thesis has

proposed a more efficient representation of the dialogue state. It has also

examined two aspects of dialogue policy optimisation. The first concerns the

problems that arise when learning in a reduced summary space of the belief

state space. The second proposes using Gaussian processes for reinforce-

ment learning to achieve fast policy optimisation and to enable adaptation

to different user types.

One of the main limiting factors that inhibits the application of POMDP-

based dialogue management to problems with a large number of states is the

intractability of the belief update and policy optimisation. The Hidden In-

formation State dialogue manager deals with the huge number of possible

dialogue states by grouping them together in partitions, elements dynami-

cally built from the concepts in the user input. This reduces the computa-

tional cost of performing the belief update. It does not, however, address

the problem of partitions’ exponential growth with the number of concepts
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in the N-best list of user inputs. This places a constraint on the length of the

N-best recognition hypotheses input from the recogniser and the length of

the dialogue that can be supported. This thesis has proposed an alternative

partition representation that depends on maintaining the logical comple-

ments of the concepts expressed by the alternative user inputs (Section 4.2).

This allows logical expressions to be used both by the user and the system,

thus supporting more complex dialogues (Section 4.4). More importantly,

the alternative partition representation supports a pruning technique which

removes the constraint on the length of the N-best list and the number of

dialogue turns that can be supported (Section 4.7.2). It has been shown in

this thesis that this pruning technique represents a significant improvement

on the original HIS branching-tree representation and furthermore that it

outperforms partition recombination [110], an alternative pruning method,

when assessed on a simulated user (Section 4.8).

This thesis has examined policy optimisation for dialogue management

in two areas. Firstly, the problems that occur when optimising a policy in a

reduced summary space rather than the full master space have been exam-

ined. Secondly, Bayesian methods of policy optimisation were investigated

in order to achieve faster convergence.

In reinforcement learning the optimal policy is derived from the Q-

function which is the expected discounted reward for a belief state action

pair. It is a common approach in POMDP policy optimisation to reduce the

space of all belief states in order to achieve tractability in learning. How-

ever, a consequence of this reduction is that mapping a selected summary

action back to the master space is not always possible. This thesis has inves-

tigated this problem and has proposed the use of the Q-function values to

sort actions in an N-best list of possible back-off actions (Section 5.4). It was

shown that such a method is guaranteed to give the highest expected perfor-

mance (Section 5.2) and this was verified empirically in interaction with a

simulated user (Section 5.5). Additionally, it has been found that extending

the summary space drastically reduces the robustness of the resulting policy.

This shows that standard non-parametric approaches to policy optimisation

place a constraint on the size of the summary space and confirms the need

for a faster policy optimisation technique.

Policy optimisation was examined in the more general context of achiev-

ing faster learning without the use of domain-specific approximations. It

162



8.1 Thesis summary

proposes the use of Gaussian processes in reinforcement leaning as a non-

parametric, Bayesian method for estimating the Q-function. Previous work

on non-parametric approaches to policy optimisation used a heavily reduced

summary space, and then discretised this space into a grid for which conven-

tional reinforcement learning algorithms are tractable. This approach has

been taken in the HIS system. While standard non-parametric approaches,

such as the grid-based approach, achieve tractability, they are limited to

cases where the summary space is very small and they depend on the use

of a crude grid, which inevitably leads to sub-optimal results. An alterna-

tive is to use a parametric approach. In the Bayesian Update of Dialogue

State (BUDS) system [73], see Section 2.2.6, the policy is defined as a pa-

rameterised combination of basis functions and the optimal solution is found

with gradient methods. There are several issues to be addressed in the use

of the parametric approach. Firstly, it requires the set of basis function to

be set by hand, using expert knowledge of the domain. Secondly, paramet-

ric approaches are only guaranteed to give the optimal solution within the

given basis, so if the basis is not chosen correctly the solution will be subop-

timal. This thesis has investigated modelling the Q-function as a Gaussian

process (Section 6.2.2).

Gaussian processes incorporate knowledge of correlations in function val-

ues in different parts of the space via the kernel function. If the kernel

function is chosen correctly, the optimal solution can be discovered more

quickly than by standard non-parametric methods, thus speeding up the

overall process of policy optimisation. Modelling the Q-function as a Gaus-

sian process has thus the capability of making the process of finding the

optimal dialogue policy faster. However, to compute the Gaussian process

posterior tractably, a sparsification method must be used.

The kernel span sparsification method used here (Section 6.2.4) has the

effect of transforming a non-parametric method into a parametric method.

Nevertheless, on a toy dialogue problem examined in this thesis, this method

demonstrated faster convergence times than a standard reinforcement learn-

ing algorithm, while reaching a close to optimal performance (Section 6.3.3).

It has furthermore been shown that the kernel parameters can be learnt from

data annotated with rewards, actions and belief states, without the need to

annotate the true underlying dialogue state. Modelling the Q-function as a

Gaussian process has also been investigated in the context of a real-world
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problem (Section 6.4). It achieved a much faster convergence than the Monte

Carlo control algorithm on the simulated user. In addition, the incorpora-

tion of active learning using the estimate of the variance of the posterior

to determine which actions should be explored in ǫ-greedy reinforcement

learning led to a further acceleration of the policy optimisation process on

the simulated user, obtaining more than 85% success rate after only 200

dialogues. This makes it feasible to perform learning in direct interaction

with humans.

Another use of the measure of uncertainty has been examined in this

thesis within the context of adaptation to different user types obtained by

varying parameters of the agenda-based user simulator (Section 3.4.2). This

preliminary work has shown that the posterior variance that is obtained by

modelling the Q-function as a Gaussian process can be used to detect the

user type and upon that select the appropriate policy to use (Section 7.5).

While this adaptation strategy did not perform as well as a universal policy

trained on all user types, it was still able to detect the correct user type

after the first turn at least 70% of the time, and that percentage stays

roughly the same even at high noise levels. Furthermore, training a single

universal policy will become intractable as systems become more complex

and the user population becomes larger and more diverse. When this occurs,

the performance of systems able to perform robust user-dependent policy

selection should outperform those relying on a single generalised policy.

The work presented in this thesis has also shed light on the main limi-

tations of the studied framework as well as in the methods that have been

proposed in this thesis. These limitations are discussed in the following

section. In Section 8.3 further research proposals are advanced that will

address these issues to facilitate full adaptive systems that can ultimately

be deployed in on-line learning with real users.

8.2 Limitations

All the methods presented in this thesis have been implemented within the

Hidden Information State framework. While this framework facilitates the

application of the POMDP approach to real-world dialogue tasks, it has

several limitations, some of which have been addressed in the thesis. The

problem of the exponential growth of partitions during dialogue has been
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fully investigated in this thesis. However, the problem of users’ changing

goal has only been partially investigated. This problem originates mainly in

the assumption made in the HIS framework that the user does not change

their mind during belief update. To address this issue adequately, the belief

update formula would need to incorporate the possibility of the user goal’s

changing. Another issue is that the user model component is not easily

parameterised and this limits its potential for learning the finer aspects of

user behaviour from data. The approach taken in the Bayesian Update

of Dialogue State (BUDS) framework is more flexible in that respect and

enables more elements of the user model to be learnt from human-computer

data.

There are currently several hand-crafted components in the Hidden In-

formation State framework that cannot be derived from data. These include

the domain ontology, the dialogue act specification, the dialogue act match-

ing model and the dialogue history model, but the most limiting of all is the

summary space. Not only is it based on heuristics, but it also constrains the

scope of system behaviour that can be automatically optimised. The idea

behind the use of Gaussian processes in reinforcement learning for dialogue

management is completely to avoid the use of the summary space and to

define correlations directly on the full belief space. However, defining the

kernel function directly on the full belief space is non-trivial.

This thesis has examined a simple form of unsupervised adaptation that

uses the uncertainty measure the Gaussian process reinforcement learning

provides. While the proposed adaptation method performed better than the

random policy selection, it was not always able to detect the correct user

type. This may be attributed to the unreliable estimate of uncertainty. More

precisely, while the examined sparsification method does achieve tractability

in Gaussian process learning, it has been shown to give overly confident es-

timates. This is not desirable for the proposed adaptation strategy. In addi-

tion, the kernel span sparsification method turns a non-parametric method,

which limits the convergence properties of the approximated Gaussian pro-

cess, so an alternative sparsification method is needed.

In order fully to exploit the potential of reinforcement learning to per-

form direct on-line learning for real users the reward is a crucial element and

the problem of obtaining it directly from the user poses a major obstacle.

Finally, all the results presented in this thesis have been obtained in in-
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teraction with the agenda-based simulated user. While the simulated user

enables a variety of dialogues to be generated, its behaviour is more con-

strained than is real user behaviour. Accordingly, the full value of these

methods needs to be confirmed in evaluation with real users.

8.3 Future work

This section presents research proposals that need to be pursued in order

to resolve the limitations that currently prevent POMDP-based dialogue

management from being fully adaptable.

This thesis has shown that applying Gaussian processes in reinforce-

ment learning significantly speeds up policy optimisation. An active learning

method brought further improvements. It simply chooses the action based

on the uncertainty estimate with probability ǫ during learning. The problem

with ǫ-greedy learning is that ǫ is set heuristically. In order to avoid this,

an alternative active learning method can be used where instead of choosing

the action based on the variance of the Q-function during exploration and

using the mean of the Q-function during exploitation, one can simply sample

Q-function values throughout the learning process. This is similar to using

a stochastic policy [32]. A similar approach was taken in the BUDS system

where a parametrised stochastic policy is used.

While the results of show that GP-Sarsa is faster in convergence com-

pared to the Monte Carlo control algorithm, the summary space that the

dialogue manager operates on is very limited. The framework, however, al-

lows the learning to take place on the full belief space. This requires the

kernel function to be defined on the belief state space and dialogue action

space. The kernel on the belief space can be composed of a kernel on the

partition space, a kernel on the user action space and a kernel function on

the dialogue history space. The kernel function on the user action space and

the system action space can be the same since both user and system actions

follow the same dialogue act structure (see Table A.1 in Appendix A). El-

ements of these spaces have variable length and the kernel functions would

have to be able to support this. An example of such a kernel is the rational

kernel [137]. Due to the partition structure the kernel defined for partition

space has to operate on trees and one such kernel is given in [136]. Further

investigation of these kernels will be part of future work.
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If these kernel functions were defined, it would also allow Gaussian pro-

cesses to be applied to the user goal model, the user action model and the

dialogue history model (see Section 2.2.6). These elements are mostly hand

coded in the HIS system (see Section 3.3.4) and limit its flexibility. Gaus-

sian processes have also been applied to model the transition probabilities

of a continuous MDP [118] and they have also been applied to model the

transition and observation probabilities in a POMDP [143]. It remains for

future work to apply this to POMDP-based spoken dialogue management.

If successful, this would be an alternative to the BUDS system, which must

make a number of approximating conditional independence assumptions in

order to achieve tractable belief monitoring and estimation of the transition

probabilities from data.

As already noted, the sparsification method used to enable tractable

update in Gaussian process-based reinforcement learning produces overly-

confident estimates. In order to ensure a more realistic estimate of the

variance of the posterior, while preserving tractability at the same time, a

better sparse approximation of Gaussian processes is required. The Fully

Independent Training Conditional (FITC) approximation has been shown to

have the desired properties, but it requires a small set of the support points

to be obtained (see Section 6.2.4 and [123, 124]). One way to achieve this

on-line would be to use the kernel span sparsification method to generate

these points on-line. Then, instead of approximating the kernel as an inner

product of feature vectors in these points as described in Section 6.2.4 and

[125], these points can be used as support points in FITC. More precisely,

the Q-function values can be assumed to be conditionally independent given

the set of support points. This results in a process which has the same

computational cost as the kernel span sparsification method, but provides a

better estimate of the variance of the posterior.

Another matter for future investigation is estimation of the kernel func-

tion from data. The choice of the kernel function is crucial to successful ap-

plication of Gaussian processes. The hyper-parameters could be optimised

on a real dialogue corpus labelled with rewards. Natural gradient descent

(Section 2.2.6) could then be used to find the hyper-parameters that max-

imise the marginal likelihood. The corpus may also be used to find the set

of support points off-line, needed for the FITC approximation mentioned

above. Splitting the corpus according to user profile would allow the hyper-
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parameters to be optimised for each particular user type separately. That

would provide a better Gaussian process model of the Q-function for each

user type and would give improvements in adaptation.

A critical element needed for on-line reinforcement learning is the esti-

mate of reward. Ideally this should be obtained directly from the user. If

an estimate of the reward during runtime was available, this would enable

better adaptation techniques where the model improves in direct interaction

with the real users. One way to obtain the reward from the real user might

be to use emotion recognition. However, state-of-the art emotion recogni-

tion systems are not yet robust enough [144]. In dialogue systems the input

is often corrupted with noise, so the emotion recogniser must be able to

provide a robust estimate. Further investigation would yield benefits.

Finally, as already mentioned, all methods presented in this thesis have

been trained and evaluated on a simulated user. While testing on real users

would clearly be better, the cost of running sufficient user trials has hith-

erto been prohibitive. However, recent developments in crowd-sourcing have

greatly simplified the problems of recruiting large numbers of subjects will-

ing to perform prescribed tasks for a very small fee. This new source of live

testing will in future make it possible to collect large amounts of real data

simply and cheaply and this will significantly enhance our ability to conduct

realistic experiments and make progress in the field [145].
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Appendix A

Dialogue act formalism

In Table A.1 CUED dialogue act definitions are given. First column repre-

sents the dialogue act, second and third column denote whether the dialogue

act is applicable to the system, the user or both and in the final column the

dialogue act description is given.
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Act System User Description
hello() X X start dialogue
hello(a=x,b=y, . . . ) × X start dialogue and give information

a=x, b=y, ...
silence() × X the user was silent
thankyou() × X non-specifying positive answer from the

user
ack() × X the user acknowledged the system’s

response
bye() X X end dialogue
hangup() × X user hangs up
inform(a=x, b=y, . . . ) X X give information a=x, b=y, ...
inform(name=none) X × inform that no suitable entity can be found
inform(a!=x, . . . ) × X inform that a is not equal to x
inform(a=dontcare, . . . ) × X the user does not care about the value of a
request(a) X X request value of a
request(a, b=x, . . . ) X X request value of a given b=x,...
reqalts() × X request alternative solution
reqalts(a=x, . . . ) × X request alternative solution with a=x,...
reqalts(a=dontcare, . . . ) × X request alternative solution relaxing

constraint a
reqmore() X × inquire if user wants anything more
reqmore() × X request more information about the

current solution
reqmore(a=dontcare) X × inquire if user would like to relax a
reqmore(a=x,b=y, . . . ) × X request more information given a=x,

b=y, ...
confirm(a=x,b=y, . . . ) X X confirm a=x, b=y, ...
confirm(a!=x, . . . ) X X confirm a!=x, ...
confirm(name=none) × X confirm that no suitable entity can be

found
confreq(a=x,...,c=z,d) X × confirm a=x, ... , c=z and request value

of d
select(a=x, a=y) X × select either a=x or a=y
affirm() X X simple yes response
affirm(a=x,b=y, . . . ) X X affirm and give further info a=x, b=y, ...
negate() X X simple no response
negate(a=x) X X negate and give corrected value for a
negate(a=x,b=y, . . . ) X X negate(a=x) and give further info b=y, ...
deny(a=x,b=y) × X no, a!=x and give further info b=y, ...
repeat() X X request to repeat last act
help() × X request for help
restart() × X request to restart
null() X X null act does nothing

Table A.1: Dialogue acts.

170



Appendix B

Pruning

B.1 Consistency proofs for pruning operations

Definition 1. An ontology is a forest of ordered trees such that all its trees

have the same root node and if a tree contains a node that has multiple child

nodes, then the first child node determines the other child nodes of that node.

Definition 2. An attribute-value pair is a pair of nodes from some ontology

tree where the value is a leaf node and the attribute is its parent node. It is

denoted as α = β.

Definition 3. Attribute-value pair α = β is called superior to attribute-

value pair α′ = β′ if, in some ontology tree, value β is the first child node of

node α and among other child nodes of α, β1, . . . , βn, there exists node βi so

that nodes α and βi appear on the path from α′ to the root in that ontology

tree.

Definition 4. A partition is a tree where all its non-leaf nodes coincide

with all non-leaf nodes of at least one ontology tree, the coinciding ontology

tree. Each leaf node of a partition is a set of boolean indicators. There is
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one indicator for each coinciding ontology tree. Each indicator corresponds

to the value in an attribute-value pair in the coinciding ontology tree, where

the attribute coincides with the parent of the leaf node in the partition.

Definition 5. The generic partition is the partition that has only two nodes.

The root node of the generic partition coincides with the root node of every

tree in the ontology and the leaf node has all indicators set to true.

Definition 6. Two partitions p and c are complementary in attribute-value

pair α = β if they are the same in all nodes except in the nodes the child

nodes of which have all indicators set to true in either p or c, and in the child

node η of node α, where in partition p all boolean indicators in node η are

set to false apart from the one for β, which is set to true, and in partition

c the indicator for β in node η is set to false. It is said that partition p

contains α = β and partition c contains α = ¬β.

Definition 7. Attribute-value pair α = β is applicable to partition p if

partition p contains the boolean indicator for value β set to true in the child

node η of node α and at least one more indicator set to true in node η.

Then, the process of applying attribute-value pair α = β to partition p is

setting the indicator for β to false in partition p and replicating partition p

into partition c where all indicators are set to false in node η, apart from

the indicator for β, which is set to true. In the case where α has multiple

child nodes in one of the coinciding ontology tree of partition c and β is

its first child node in that ontology tree, other child nodes of node α are

created in that partition. Every newly created child node then has a child

leaf node where all indicators are set to true. The same applies to partition p

if only one indicator in node η remains true. Partition c is called a child of

partition p and partition p is called the parent of c. The process of applying
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attribute-value pair to a partition is also called partitioning.

Statement 1. Partition p and its child partition c created by partitioning

p with α = β to p are complementary in α = β.

Proof. Trivial from Defs. 6 and 7.

Definition 8. A tree of partitions is an ordered tree where the nodes are

partitions connected in parent-child relationship. The tree of partitions is

created by applying ordered list of attribute-value pairs α1 = β1, . . . , αn = βn

in such way that α1 = β1 is applied to the generic partition, α2 = β2 is

applied to all resulting partitions and so on for every subsequent attribute-

value pair from the list.

Definition 9. A subtree of partitions is a tree of partitions where instead

of the generic partition the partitioning process starts with an arbitrary par-

tition.

Statement 2. Two trees of partitions are the same if they are created using

the same ordered list of attribute-value pairs.

Proof. Trivial from Def. 8.

Statement 3. Two subtrees of partitions are the same if they are created

using the same ordered list of attribute-value pairs starting from the same

partition.

Proof. Trivial from Stat. 2.

Statement 4. Attribute-value pair α = β cannot be applied to partition p

if partition p does not contain all the superior attribute-value pairs of α = β

that belong to one coinciding ontology tree of partition p.
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Proof. Trivial from Defs. 3 and 7.

Statement 5. Let T be the tree of partitions created with ordered list of

attribute-value pairs α1 = β1, . . . , αk = βk, α = β, αk+1 = βk+1, . . . , αn =

βn. Then, there exists at least one pair of partitions p and c in T such that

p is the parent of c, they are complementary in α = β and for every such p

there exists only one c.

Proof. Let T ′ be the tree of partitions created by attribute-value pairs α1 =

β1, . . . , αk = βk. Then, in order to apply attribute value pair α = β, α = β

has to be applicable to at least one partition p. Applying α = β to partition p

creates partition c such that p is the parent of c and they are complementary

in α = β (Def. 7 and Stat. 1).

Attribute-value pair α = β is only applied to partition p if it contains

node η where the indicator for value β set to true. Once p is partitioned, the

indicator is set to false in node η and therefore α = β cannot be reapplied

to partition p (Def. 7). Hence, another such child partition c cannot be

created.

Definition 10. Pruning of attribute-value pair α = β from tree of partitions

T built using ordered list of attribute-value pairs α1 = β1, . . . , αk = βk, α =

β, αk+1 = βk+1, . . . , αn = βn is the process of removing all partitions from

the tree T that are built using α = β or created from partitions that are

built using α = β so that the resulting T ′ is the same as if it was built using

attribute-value pairs α1 = β1, . . . , αk = βk, αk+1 = βk+1, . . . , αn = βn.

Statement 6. Let T be the tree of partitions created by applying ordered list

of attribute-value pairs α1 = β1, . . . , αk = βk, α = β, αk+1 = βk+1, . . . , αn =

βn. Let p and c be a pair of partitions such that p is the parent of c and
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they are complementary in α = β. Let α = β be not among the superiors

for any attribute-value pair αi = βi, i = k + 1, . . . , n. If p and c are roots

of subtrees, these subtrees have the same structure and for every partition

in one subtree there exists a partition in the same place in the other subtree

and such that they are complementary in α = β.

Proof. Assume that every attribute-value pair αi = βi from αk+1 = βk+1, . . . , αn =

βn, if applicable to a partition that contains α = β, is then also applicable

to partition that contains α = ¬β. Then, sublist of applied attribute-value

pairs αi1 = βi1 , . . . , αim = βim that is applicable to a partition which con-

tains α = β, is also applicable to a partition which contains α = ¬β. By

Defs. 7 and 6 partition p contains α = β and partition c contains α = ¬β.

Since the sublist αi1 = βi1 , . . . , αim = βim is applied in the same order to

both of these partitions, it creates two subtrees with roots p and c respec-

tively. These subtrees have the same structure since the list is applied in

the same order and by Def. 8 a tree of partitions is an ordered tree. Had

p and c been identical then these subtrees would have been identical too

(Stat. 3). Since partitions p and c only differ in the child node η of node α,

every partition of one subtree only differs in node η from the partition in

the same position in the other subtree. In that way, for every partition in

the subtree with the root p there exists a partition in the same place in the

subtree with the root c and such that they are complementary in α = β.

Let αi = βi be an attribute-value pair that is applicable to partitions

that contain α = β but not applicable to partitions that contain α = ¬β.

That means that αi = βi can only appear in trees that contain α = β, which

means that having indicator for β set to true enables creating other child

nodes of α and thus allows for αi = βi to be applied. Then, by Def. 3,
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α = β is among the superiors for αi = βi. This is in contradiction with the

assumption that α = β is not among the superiors for any attribute-value

pair αi = βi, i = 1, . . . , k.

Statement 7. Let T be the tree of partitions created by applying ordered list

of attribute-value pairs α1 = β1, . . . , αk = βk, α = β, αk+1 = βk+1, . . . , αn =

βn and α = β is not among superiors for any attribute-value pair αi = βi,

i = 1, . . . , k. Then, α = β can be pruned from T .

Proof. According to Stat. 6 there exists at least one pair of partitions p and

c which are complementary in α = β and if they are roots of subtrees, then

for every partition in one subtree there exists a partition in the same place in

the other subtree such that they are complementary in α = β. If for all such

pairs p and c, the subtree with c as the root is removed and the indicator

for β is set to true in each partition in the subtree with p as the root, the

resulting tree does not have any partitions created by applying α = β or

created from the partitions that had α = β applied to it.

Statement 8. Any attribute-value pair that is used for building a tree of

partitions can be pruned from that tree.

Proof. Let α = β be the attribute value pair that is to be pruned from tree of

partitions T created by α1 = β1, . . . , αk = βk, α = β, αk+1 = βk+1, . . . , αn =

βn. If α = β is not among any superiors of αk+1 = βk+1, . . . , αn = βn then

Stat. 7 applies.

Assume α = β is among the superiors for αki = βki from αk+1 =

βk+1, . . . , αn = βn and assume αki = βki is not among superiors for any

of αki+1
= βki+1

, . . . , αn = βn. Let partitions p and c be complementary in

α = β and be the roots of subtrees Tp and Tc. Then, according to Stat. 7
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B.1 Consistency proofs for pruning operations

αi = βi can be pruned from subtree Tc and the resulting subtree T ′
c is the

same one as the one created when αk+1 = βk+1, . . . , αki−1
= βki−1

, αki+1
=

βki+1
, . . . , αn = βn are applied to partition c. Then, if α = β is not among

superiors for any of αk+1 = βk+1, . . . , αki−1
= βki−1

, αki+1
= βki+1

, . . . , sn =

βn, according to Stat. 7, it can be pruned. Otherwise the same applies to

any such attribute-value pair from αk+1 = βk+1, . . . , αki−1
= βki−1

, αki+1
=

βki+1
, . . . , αn = βn, α = β is the superior of.

If αki = βki is among superiors for any of αki+1
= βki+1

, . . . , αn = βn

the same procedure is applied recursively until the attribute-value pair that

is not among superiors for any of the attribute-value pairs following in the

list is found and pruned. The last attribute-value pair trivially satisfies that

requirement.
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B. Pruning

B.2 Pseudo code for pruning

void Part::prune(AttributeValuePair d)

{

PartPtr upper, lower;

Stack<float>& s;

if(this->has_children)

for each child c of this starting from the oldest

c->prune(d);

if (this->contains(complement(d)))

{

upper=this;

for each child c of upper starting from the oldest

if(c->contains(d))

{

lower=c;

break;

}

lower->deletePartitions(s);

s.push(lower->belief);

delete(lower);

upper->updateBeliefandRemoveComplements(s,d);

}

}

void Part::deletePartitions(Stack<float>& s)

{

for each child c of this starting from the oldest
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B.2 Pseudo code for pruning

{

c->deletePartitions(s);

c->push(belief(c));

}

delete(children);

}

void Part::updateBeliefandRemoveComplements(Stack<float>&d, AttributeValuePair d)

{

this->belief+=s.pop();

this->removeComplement(d);

for each child c starting from oldest that contains negation of d

{

c->updateBeliefandRemoveNegations(s,d);

if(s->size()==0)

break;

}

}
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Appendix C

CamInfo domain

C.1 CamInfo ontology

The CamInfo database has a tourist information for Cambridge, so that the

user can ask for information about a restaurant, a bar, a hotel, a museum or

other tourist attractions in the local area. The database consists of approx-

imately 500 entities, each of which has up to 10 attributes that the user can

query. The possible attribute-value pairs are organised in an hierarchical

ontology, see Table C.1.

entity ← venue(type, name, area, near, addr, phone, postcode)

type ← placetostay(staytype, hasinternet, hasparking, price,

pricerange, stars)

type ← placetoeat(eattype, pricerange, openhours, price)

type ← placetodrink(drinktype, pricerange, openhours, price)

type ← placetosee(seetype, pricerange, openhours)

type ← entsvenue(entstype)

type ← univenue(unitype, openhours)

type ← sportsvenue(sport)

type ← transvenue(transtype)

type ← shopvenue(shoptype, openhours)

Table C.1: CamInfo ontology rules.
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C. CamInfo domain

type ← amenity(amtype)

amtype ← hospital()

amtype ← policestation()

amtype ← bank(openhours)

amtype ← postoffice(openhours)

amtype ← touristinfo(openhours)

shoptype ← supermarket()

shoptype ← shoppingcentre()

transtype ← airport()

transtype ← busstation()

transtype ← trainstation(openhours)

staytype ← guesthouse()

staytype ← hotel()

eattype ← restaurant(food)

drinktype ← bar(childrenallowed, hasinternet, hasmusic, hastv,

openhours, price)

drinktype ← coffeeshop()

drinktype ← pub(childrenallowed, hasfood, hasinternet, hastv)

seetype ← architecture()

seetype ← museum()

seetype ← park()

unitype ← college()

unitype ← department()

unitype ← library()

entstype ← cinema()

entstype ← theatre()

entstype ← nightclub(openhours, price, pricerange)

entstype ← entertainment()

Table C.1: CamInfo ontology rules.
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C.2 Typical long CamInfo dialogue requiring negotiation

entstype ← boat()

entstype ← concerthall()

food = { American, Cafe food, Chinese, ... }

pricerange = { free, cheap, moderate , ... }

sport = { badmintoncourt, cricketfield, footballfield , ... }

area = { girton, kingshedges, arbury , ... }

...

Table C.1: CamInfo ontology rules.

C.2 Typical long CamInfo dialogue requiring ne-

gotiation

In Table C.2 an example of a typical long dialogue requiring negotiation is

given. It consists of 17 dialogue turns in each of which the system prompt

and the true user action are given. In addition, the system’s dialogue act

and a scored list of the N-best user dialogue acts are provided, together with

the probability of the most likely hypothesis and a sorted list of applied

attribute-value pairs with their marginal probabilities. The attribute-value

pairs that are in bold font match the most likely partition.

There are several points of the dialogue to note. Firstly, turns 4-6 show

how the user goal changes during the dialogue. Secondly, turns 8 and 11

show the capability of the system to deal with long N-best inputs1. Further-

more, there are examples of how the system deals with a range of problems,

such as mis-recognitions in turns 9, 11 and 12, a user mistake in turn 10

and a silence detection problem in turn 13. Moreover, in turns 8, 9 and

11-16 pruning of the lowest probability attribute value pairs takes place.

Finally, it is interesting to note how the probability of the top hypothesis

changes over time. For example, in turn 12, where a mis-recognition occurs,

the probability of the top hypothesis is very low, only 0.013. This is due

1The confidence scores are here rounded to two decimals, but in fact they are always
greater than zero.
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C. CamInfo domain

to the fact that the user through-out the dialogue asked for a place to stay

and in turn 12 the top partition contains a restaurant. However, in turn

14 and 15 when the system offers a hotel and user asks for an address, the

probability increases from 0.025 to 0.308 showing how the system became

more confident about the user’s requirements.

1 System act hello()

System prompt Thank you for calling the Cambridge Information

system. How may I help you?

True user action HI I’M LOOKING FOR A PLACE TO STAY

N-best input hello(type=placetostay,task=find) 1.00

hello(type=placetostay) 0.00

hello(type=placetostay,name=“The Place”,task=find)

0.00

Top hypothesis prb 0.676

Applied attributes task=find 0.997; entity=venue 0.994;

type=placetostay 0.987; name=The Place 0.312;

2 System act confreq(type=placetostay,near)

System prompt You are looking for a place to stay. Are you looking for

somewhere near a particular venue?

True user action MAYBE SOMEWHERE IN THE CENTRE

N-best input inform(area=citycentre) 1.00

Top hypothesis prb 0.900

Applied attributes task=find 0.999; entity=venue 0.998;

area=citycentre 0.972; type=placetostay 0.932;

name=The Place 0.012;

3 System act inform(name=“Gonville Hotel”, type=placetostay,

area=citycentre)

System prompt The Gonville Hotel is a great place to stay and it’s in

the central part of town.

True user action IS IT EXPENSIVE

Table C.2: A typical long negotiative dialogue.
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C.2 Typical long CamInfo dialogue requiring negotiation

N-best input confirm(pricerange=expensive) 1.00

inform(pricerange=expensive) 0.00

Top hypothesis prb 0.456

Applied attributes task=find 0.999; entity=venue 0.998;

type=placetostay 0.991; name=Gonville

Hotel 0.978; area=citycentre 0.930;

pricerange=expensive 0.495; name=The

Place 0.006;

4 System act inform(name=“Gonville Hotel”,pricerange=none)

System prompt I am sorry but there is no information about the price

range for the Gonville Hotel.

True user action DO YOU HAVE ANY CHEAP HOTELS

N-best input inform(pricerange=cheap,=hotel) 0.96

inform(=hotel) 0.04

Top hypothesis prb 0.290

Applied attributes task=find 0.999; entity=venue 0.998;

type=placetostay 0.987; area=citycentre 0.806;

staytype=hotel 0.708; pricerange=cheap 0.585;

name=Gonville Hotel 0.523;

pricerange=expensive 0.201; name=The Place 0.014;

5 System act inform(name=none, type=placetostay, area=citycentre,

pricerange!=dontcare)

System prompt There is no place to stay in the central area for which I

have any information about the price range.

True user action HOW ABOUT RIVERSIDE

N-best input reqalts(area=riverside) 0.90

inform(area=riverside) 0.05

reqalts() 0.04

Table C.2: A typical long negotiative dialogue.
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C. CamInfo domain

reqalts(=bar,area=riverside) 0.01

null() 0.00

Top hypothesis prb 0.213

Applied attributes task=find 0.999; entity=venue 0.998;

area=riverside 0.775; type=placetostay 0.752;

staytype=hotel 0.585; pricerange=cheap 0.419;

name=Gonville Hotel 0.273; type=placetodrink 0.198;

area=citycentre 0.152; pricerange=expensive 0.150;

drinktype=bar 0.092; name=The Place 0.068;

6 System act inform(name=none,type=placetostay,pricerange=cheap)

System prompt There is no place to stay in the cheap price range.

True user action HOW ABOUT SOMETHING MODERATE

N-best input reqalts(pricerange=moderate) 0.83

inform(pricerange=moderate) 0.17

Top hypothesis prb 0.065

Applied attributes task=find 0.999; entity=venue 0.998;

pricerange=moderate 0.847; area=riverside 0.612;

type=placetostay 0.593; type=placetodrink 0.394;

staytype=hotel 0.338; name=Gonville Hotel 0.247;

area=citycentre 0.218; drinktype=bar 0.193;

name=The Place 0.138; pricerange=cheap 0.037;

pricerange=dontcare 0.036;

pricerange=expensive 0.033;

7 System act inform(name=none, type=placetostay, staytype=hotel,

area=riverside, pricerange=moderate)

System prompt There is no hotel in the riverside area in the moderate

price range.

True user action I DON’T CARE ABOUT THE AREA

Table C.2: A typical long negotiative dialogue.
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N-best input inform(=dontcare) 1.00

null() 0.00

Top hypothesis prb 0.116

Applied attributes task=find 0.999; entity=venue 0.998;

name=dontcare 0.569; type=placetostay 0.512;

area=dontcare 0.491; type=placetodrink 0.458;

pricerange=dontcare 0.433;

pricerange=moderate 0.357; drinktype=bar 0.252;

area=riverside 0.252; staytype=hotel 0.249;

area=citycentre 0.131; name=Gonville Hotel 0.124;

name=The Place 0.103; pricerange=cheap 0.061;

pricerange=expensive 0.059;

8 System act inform(name=“The Eagle”, type=placetodrink,

drinktype=bar, area=citycentre, pricerange=none)

System prompt The Eagle, which is in the central part of town, is a

great bar.

I am sorry but there is no information about the price

range for it.

True user action I’M LOOKING FOR A PLACE TO STAY

N-best input inform(type=placetostay,task=find) 0.99

inform(type=placetostay, name=“The Place”,

task=find) 0.01

inform(type=placetostay) 0.00

inform(=trainstation, name=“The Place”, task=find)

0.00

inform(type=placetostay, name=“Cambridge Police

Station”, task=find) 0.00

hello(type=placetostay) 0.00

Table C.2: A typical long negotiative dialogue.
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3 attribute-value pairs are pruned

Top hypothesis prb 0.080

Applied attributes task=find 0.999; entity=venue 0.998;

type=placetostay 0.814;

pricerange=moderate 0.516;

staytype=hotel 0.421; area=riverside 0.321;

pricerange=dontcare 0.259; area=dontcare 0.254;

area=citycentre 0.196; type=placetodrink 0.125;

name=Gonville Hotel 0.093; drinktype=bar 0.065;

name=dontcare 0.065; name=The Eagle 0.049;

name=Cambridge Police Station 0.049; name=The

Place 0.049; type=transvenue 0.039;

transtype=trainstation 0.020;

9 System act inform(name=none, type=placetostay, staytype=hotel,

area=riverside, pricerange=moderate)

System prompt There is no hotel in the riverside area in the moderate

price range.

True user action I DON’T CARE ABOUT THE AREA

N-best input inform(=dontcare) 0.57

null() 0.28

inform() 0.15

7 attribute-value pairs are pruned

Top hypothesis prb 0.069

Table C.2: A typical long negotiative dialogue.

188



C.2 Typical long CamInfo dialogue requiring negotiation

Applied attributes task=find 0.998; entity=venue 0.995;

type=placetostay 0.958;

pricerange=dontcare 0.435; staytype=hotel 0.420;

area=dontcare 0.386; pricerange=moderate 0.365;

name=dontcare 0.205; area=riverside 0.187;

area=citycentre 0.182; name=Gonville Hotel 0.117;

10 System act inform(name=“City Centre North”, type=placetostay,

staytype=guesthouse, area=arbury, pricerange=none)

System prompt City Centre North is an outstanding guesthouse in the

Arbury part of town,

also I am sorry but there is no information about the

price range for it.

True user action DO YOU HAVE ANY MODERATE RESTAURANT

UH HOTEL

N-best input inform(pricerange=moderate, =restaurant, =hotel)

0.91

inform(=restaurant, =hotel) 0.05

inform(pricerange=moderate, =restaurant) 0.04

Top hypothesis prb 0.023

Table C.2: A typical long negotiative dialogue.
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Applied attributes task=find 0.999; entity=venue 0.998;

type=placetostay 0.743;

pricerange=dontcare 0.399;

pricerange=moderate 0.362; name=City Centre

North 0.301; area=dontcare 0.277;

staytype=guesthouse 0.261; type=placetoeat 0.216;

staytype=hotel 0.209; name=dontcare 0.188;

area=citycentre 0.182; area=riverside 0.169;

area=arbury 0.169; eattype=restaurant 0.124;

name=Gonville Hotel 0.101;

11 System act inform(name=“Finches Bed and Breakfast”,

type=placetostay, area=girton, pricerange=none,

staytype=guesthouse)

System prompt Finches Bed and Breakfast is a great guesthouse in the

Girton part of town and I am sorry but there is no

information about the price range for it.

True user action I’M LOOKING FOR A MODERATELY PRICED

PLACE TO STAY

N-best input inform(pricerange=moderate, task=find) 0.79

inform(name=“The Place”, pricerange=moderate,

task=find) 0.09

inform(type=placetostay, pricerange=moderate,

task=find) 0.06

inform(pricerange=free, pricerange=moderate,

task=find) 0.04

inform(type=placetostay, pricerange=moderate,

name=“The Place”, task=find) 0.01

3 attribute-value pairs are pruned

Table C.2: A typical long negotiative dialogue.
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Top hypothesis prb 0.062

Applied attributes task=find 0.999; entity=venue 0.998

type=placetostay 0.974; staytype=guesthouse 0.344;

staytype=hotel 0.270; area=dontcare 0.206;

area=girton 0.168; area=riverside 0.155;

area=arbury 0.150; area=citycentre 0.134; name=City

Centre North 0.063; pricerange=dontcare 0.074;

pricerange=free 0.072; name=dontcare 0.064;

name=Finches Bed and Breakfast 0.063; name=The

Place 0.063;

12 System act inform(name=“Express by Holiday Inn”,

area=barnwell, type=placetostay, hasinternet=true,

hasparking=true, stars=“2”)

System prompt The Express Holiday Inn has an internet connection

and a parking lot and it’s in the Barnwell part of town.

This place, which has 2 stars, is a great place to stay.

True user action WHAT’S THE PRICERANGE

N-best input inform(=restaurant) 0.89

null() 0.11

5 attribute-value pairs are pruned

Top hypothesis prb 0.013

Table C.2: A typical long negotiative dialogue.
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Applied attributes task=find 0.999; entity=venue 0.999;

type=placetostay 0.815; pricerange=moderate 0.594;

hasinternet=true 0.408; hasparking=true 0.408;

stars=2 0.407; name=Express by Holiday Inn 0.327;

staytype=guesthouse 0.279; staytype=hotel 0.251;

name=City Centre North 0.224;

type=placetoeat 0.17; area=dontcare 0.161;

eattype=restaurant 0.146; area=barnwell 0.145;

area=riverside 0.142; area=girton 0.141;

area=arbury 0.133; area=citycentre 0.129;

13 System act inform(name=“Riverside Restaurant and Granta Bar”,

area=riverside, eattype=restaurant, type=placetoeat,

food=Traditional, pricerange=expensive,

near=“Queens’ College”)

System prompt The Riverside Restaurant is an outstanding restaurant

in the riverside part of town in the expensive price

range near Queens’ College, also it serves traditional

food.

True user action I’M LOOKING

N-best input inform(task=find) 0.50

null() 0.50

8 attribute-value pairs are pruned

Top hypothesis prb 0.008

Table C.2: A typical long negotiative dialogue.
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Applied attributes task=find 0.999; entity=venue 0.997;

type=placetostay 0.830; hasinternet=true 0.422;

hasparking=true 0.422; stars=2 0.416;

pricerange=moderate 0.414;

staytype=guesthouse 0.408;

pricerange=expensive 0.286; area=dontcare 0.260;

area=riverside 0.252; area=barnwell 0.243;

name=Express by Holiday Inn 0.170; name=Riverside

Restaurant and Granta Bar 0.168;

type=placetoeat 0.146; eattype=restaurant 0.095;

food=Traditional 0.047;

14 System act inform(name=“The Cricketers”, area=riverside,

near=“Ruskin Gallery”)

System prompt The Cricketers is in the riverside part of town near the

Ruskin Gallery.

True user action I’M LOOKING FOR A FOR A HOTEL IN THE

MODERATE PRICERANGE

N-best input inform(pricerange=moderate, =hotel, task=find) 0.96

inform(=hotel, pricerange=moderate) 0.04

5 attribute-value pairs are pruned

Top hypothesis prb 0.025

Table C.2: A typical long negotiative dialogue.
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Applied attributes task=find 0.999; entity=venue 0.999;

type=placetostay 0.993;

pricerange=moderate 0.722;

staytype=hotel 0.722; hasinternet=true 0.503;

hasparking=true 0.503; stars=2 0.493;

textbfarea=dontcare 0.264; area=riverside 0.244;

area=barnwell 0.244; name=The Cricketers 0.206;

staytype=guesthouse 0.135;

pricerange=expensive 0.135;

15 System act inform(name=“The Cambridge Belfry”,

type=placetostay, staytype=hotel,

pricerange=moderate, area=girton, hasinternet=true,

hasparking=true)

System prompt The Cambridge Belfry, which has an internet

connection and parking spaces, is an outstanding hotel.

It’s in the moderate price range and in the Girton part

of town.

True user action WHAT’S THE ADDRESS

N-best input request(addr) 1.00

3 attribute-value pairs are pruned

Top hypothesis prb 0.308

Table C.2: A typical long negotiative dialogue.
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Applied attributes task=find 0.999; entity=venue 0.998;

type=placetostay 0.990;

pricerange=moderate 0.854;

staytype=hotel 0.854; name=The Cambridge

Belfry 0.794; hasinternet=true 0.791;

hasparking=true 0.791; area=dontcare 0.390;

area=girton 0.365; stars=2 0.199;

area=barnwell 0.081; area=riverside 0.081;

16 System act inform(name=“The Cambridge Belfry”, addr=“Back

Lane, Cambourne”)

System prompt The Cambridge Belfry is located on Back Lane,

Cambourne.

True user action AND THE PHONE NUMBER

N-best input request(phone) 1.00

2 attribute-values are pruned

Top hypothesis prb 0.427

Applied attributes task=find 0.999; entity=venue 0.998;

type=placetostay 0.993; hasinternet=true 0.912;

hasparking=true 0.912;

pricerange=moderate 0.912; stars=2 0.081;

staytype=hotel 0.912; name=The Cambridge

Belfry 0.914; area=dontcare 0.482;

area=girton 0.460;

17 System act inform(name=“The Cambridge Belfry”,

phone=“01954714600”)

System prompt The phone number of The Cambridge Belfry is

01954714600.

True user action THANKS BYE

Table C.2: A typical long negotiative dialogue.
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Hanging up

Table C.2: A typical long negotiative dialogue.
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Appendix D

Gaussian processes in

reinforcement learning

D.1 GP-Sarsa for episodic tasks

For a set of visited belief state-action pairs Bt = [(b0, a0), . . . , (bt, at)]T,

observed immediate rewards rt = [r1, . . . , rt]T and the dictionary of m rep-

resentative points Dt = {(b̃0, ã0), . . . , (b̃m, ãm)}, the posterior of the Q-

function (repeated from Eqs. 6.19, 6.10, 6.9d, 6.9a) can be written as:

Q(b, a)|Bt, rt ∼ N(k̃t(b, a)
Tµ̃t, k((b, a), (b, a))− k̃t(b, a)

TC̃tk̃t(b, a)),

(D.1a)

µ̃t = H̃T

t W̃trt, (D.1b)

C̃t = H̃T

t W̃tH̃t, (D.1c)

W̃t = (H̃tK̃tH̃
T

t + σ2H̃tH̃
T

t )
−1, (D.1d)

H̃t = HtGt, (D.1e)
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Ht =




1 −γ · · · 0 0

0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ



, (D.1f)

Gt = [(K̃−1
t k̃t(b

0, a0))T, . . . , (K̃−1
t k̃t(b

t, at))T]T, (D.1g)

and

k̃t(b, a) = [k((b, a), (b̃0, ã0)), . . . , k((b, a), (b̃m, ãm))]T, (D.1h)

K̃ = [k̃t(b̃
0, ã0)T, . . . , k̃t(b̃

m, ãm)T]T. (D.1i)

For two consequent belief state-action pairs and an associated reward (bt,

at, rt+1, bt+1, at+1), the posterior Q(b, a)|Bt+1, rt+1 needs to be calculated

efficiently, where Bt+1 = [BT
t , (b

t+1, at+1)]T and rt+1 = [rTt , r
t+1]T. In [125]

the sufficient statistics that enable this with complexity O(m2), where m

is the size of the dictionary, are given for non-episodic tasks. Here, this is

extended to support episodic tasks.

The main difference between episodic and non-episodic tasks is in the

way the Q-function and the reward are related.

In the case where bt is not an initial turn and bt+1 is not the final turn

in the episode, the relation follows from Eq. 6.8:

rt = Qπ(bt−1, at−1)− γQπ(bt, at) + ∆Qπ(bt−1, at−1)− γ∆Qπ(bt, at)

rt+1 = Qπ(bt, at)− γQπ(bt+1, at+1) + ∆Qπ(bt, at)− γ∆Qπ(bt+1, at+1).

(D.2)

In the case where bt+1 is the final belief state in the episode, there is no

Q-function or residual associated with it, so the reward rt+1 relates to the

Q-function and its residual in belief state bt:

rt = Qπ(bt−1, at−1)− γQπ(bt, at) + ∆Qπ(bt−1, at−1)− γ∆Qπ(bt, at)

rt+1 = Qπ(bt, at) + ∆Qπ(bt, at). (D.3)

In the case where bt is an initial turn of episode e, t = 0, both belief state

b0 and belief state b1 are visited for the first time. The previously obtained
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reward rTe−1+1 is only associated with the last (non-terminal) belief state

of the previous episode e− 1. The relation between the Q-function and the

reward in this case is:

rTe−1+1 = Qπ(bTe−1 , aTe−1) + ∆Qπ(bTe−1 , aTe−1)

r1 = Qπ(b0, a0)− γQπ(b1, a1) + ∆Qπ(b0, a0)− γ∆Qπ(b1, a1). (D.4)

For each of these three cases a description of sufficient statistics is given

in the following sections, which enables the posterior at turn t + 1 to be

calculated in O(m2) operations, where m the size of the dictionary.

D.1.1 Case 1: bt non-initial belief state and bt+1 non-terminal

belief state

The case where bt is a non-initial belief state and bt+1 is a non-terminal

belief state coincides with the description given in [125]. For clarity, the

main points are reproduced here.

From Eq. D.2 the relation between the previous Ht (defined in Eq. D.1f)

and new Ht+1 is given by:

Ht+1 =

[
Ht 0

0T 1 −γ

]
. (D.5)

Since bt is not the initial belief state, it has been visited at the previous

turn. However, belief state bt+1 is visited for the first time. If the spar-

sification threshold is exceeded belief state bt+1 must be included in the

dictionary.

First is the case when the dictionary remains the same, Dt+1 = Dt. Then

the approximation of the Gram matrix also remains the same: K̃t+1 = K̃t.

Since the sparsification threshold is not exceeded, the vector of coefficients

for belief state bt+1 is gt+1 = K̃−1
t k̃t(b

t+1):

Gt+1 =

[
Gt

gT

t+1

]
. (D.6)
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From Eq. D.5 and Eq. D.1a:

H̃t+1 =

[
H̃t

h̃T

t+1

]
, (D.7)

where h̃t+1 = gt+1 − γgt. This then allows W̃−1
t+1 (defined in Eq. D.1a) to

be calculated using W̃−1
t :

W̃−1
t+1 =

[
H̃tK̃tH̃

T
t + H̃tH̃

T
t H̃tK̃th̃t+1 + H̃th̃t+1

h̃T

t+1K̃tH̃t + h̃T

t+1H̃t h̃T

t+1H̃th̃t+1

]

=

[
W̃−1

t H̃t∆k̃t+1 − γσ2u

(H̃t∆k̃t+1 − γσ2u)T h̃T

t+1∆k̃t+1 + (1 + γ2)σ2

]
,

(D.8)

where ∆k̃t+1 = K̃th̃t+1 = k̃(bt, at)−γk̃(bt+1, at+1) and u = [0T, 1]T. Then,

the recursive expression for W̃t+1 follows using the partitioned matrix in-

verse theorem [125, 146]:

W̃t+1 =
1

vt+1

[
W̃t + ltl

T
t −lTt

−lt 1

]
, (D.9)

where lt = W̃t(H̃t∆k̃t+1 − γσ2u) and vt+1 = (1 + γ2)σ2 + h̃T

t+1∆k̃t+1 +

(H̃t∆k̃t+1 − γσ2u)TW̃T
t (H̃t∆k̃t+1 − γσ2u).

Replacing the expression for W̃t+1 from Eq. D.9 in expressions for C̃t+1

and µ̃t+1 in Eq. D.1a allows the following recursive relations to be estab-

lished:

µ̃t+1 = µ̃t +
c̃t+1

vt+1
dt+1,

C̃t+1 = C̃t +
1

vt+1
c̃t+1c̃

T

t+1

vt+1 = (1 + γ2)σ2 +∆k̃T

t+1(c̃t+1 +
γσ2

vt
c̃t)−

γ2σ4

vt

dt+1 = γσ2

vt
dt + rt+1 −∆k̃T

t+1µ̃t

c̃t+1 = γσ2

vt
c̃t + h̃t+1 − C̃t∆k̃t+1.

(D.10)

The expressions in Eq. D.10 represent the sufficient statistics for the

posterior of the Q-function. The complexity of calculating the posterior is

O(m2), where m = |Dt+1|.

Second is the case when the next belief state bt+1 must be included in
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D.1 GP-Sarsa for episodic tasks

the dictionary, Dt+1 = {(bt+1, at+1)} ∪Dt. In that case the approximated

Gram matrix K̃t+1 and the matrix of coefficients Gt+1 are expanded:

K̃t+1 =

[
K̃t k̃t(b

t+1, at+1)

k̃t(b
t+1, at+1)T k((bt+1, at+1), (bt+1, at+1))

]
,

Gt+1 =

[
Gt 0

0T 1

]
.

(D.11)

Then from Eq. D.11 and Eq. D.1a:

H̃t+1 =

[
H̃t 0

h̃T

t+1

]
, (D.12)

where h̃t+1 = [gT
t ,−γ]

T and gT
t is the last row of matrixGt, gt = K̃−1

t k̃(bt, at).

It can be shown that then W̃−1
t+1 becomes:

W̃−1
t+1 =

[
W̃−1

t H̃t∆k̃t+1

∆k̃T

t+1H̃
T
t ∆ktt + (1 + γ2)σ2

]
, (D.13)

where ∆ktt = gT
t (k̃(b

t, at)−2γk̃(bt+1, at+1))+γ2k((bt+1, at+1), (bt+1, at+1)).

In a similar way when the dictionary is not expanded, applying the parti-

tioned matrix inverse theorem to expression for W̃−1
t+1 yields a recursive

expression for W̃t+1. Replacing this in expressions for µ̃t+1 and C̃t+1 gives:

µ̃t+1 =

[
µ̃t

0

]
+ c̃t+1

vt+1
dt+1,

C̃t+1 =

[
C̃t 0

0T 0

]
+ 1

vt+1
c̃t+1c̃

T

t+1

vt+1 = (1 + γ2)σ2 +∆ktt −∆k̃T

t+1C̃t∆k̃t+1 +
2γσ2

vt
c̃t∆k̃t+1 −

γ2σ4

vt

dt+1 = γσ2

vt
dt + rt+1 −∆k̃T

t+1µ̃t

c̃t+1 = γσ2

vt

[
c̃t

0

]
+ h̃t+1 −

[
C̃t∆k̃t+1

0

]
.

(D.14)

The complexity of calculating the posterior remains O(m2) where m =

|Dt+1|.
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D.1.2 Case 2: bt+1 terminal belief state

In the case where bt+1 is the terminal belief state, there is no action or Q-

value associated with that belief state so it is not included in the dictionary.

The reward only relates to the Q-value of belief state bt and action at, as

in Eq. D.3, so the relation between previous Ht and new Ht+1 becomes:

Ht+1 =

[
Ht

0T 1

]
. (D.15)

The dictionary and the approximated Gram matrix remain the same,

Dt+1 = Dt and K̃t+1 = K̃t, and Gt+1 and H̃t+1 become:

Gt+1 =

[
Gt

gT
t

]
, H̃t+1 =

[
H̃t

h̃T

t+1

]
, (D.16)

where h̃t+1 = gt and gT
t the last row from Gt (associated with belief

state bt). This allows for W̃−1
t+1 to be expressed using W̃−1

t :

W̃−1
t+1 =

[
W̃−1

t H̃t∆k̃t+1 − γσ2u

(H̃t∆k̃t+1 − γσ2u)T h̃T

t+1∆k̃t+1 + γ2σ2

]
, (D.17)

where ∆k̃t+1 = k̃t(b
t, at). Applying the partitioned matrix inverse theorem

to expression for W̃−1
t+1 yields W̃t+1. The recursive expressions for µ̃t+1 and

C̃t+1 then become:

µ̃t+1 = µ̃t +
c̃t+1

vt+1
dt+1,

C̃t+1 = C̃t +
1

vt+1
c̃t+1c̃

T

t+1

vt+1 = γ2σ2 +∆k̃T

t+1(c̃t+1 +
γσ2

vt
c̃t)−

γ2σ4

vt

dt+1 =
γσ2

vt
dt + rt+1 −∆k̃T

t+1µ̃t

c̃t+1 =
γσ2

vt
c̃t + h̃t+1 − C̃t∆k̃t+1, (D.18)

which represent the sufficient statistics and the complexity is O(m2), where
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D.1 GP-Sarsa for episodic tasks

m = |Dt+1|.

D.1.3 Case 3: bt initial belief state

In the case when bt is the initial belief state of new episode e, the relation

between previous HTe−1
and new H1 follows from Eq. D.4:

H1 =

[
HTe−1

0 0

0T 1 −γ

]
. (D.19)

In this case, both b0 and b1 are visited for the first time and both can

potentially expand the dictionary. Therefore this case has four sub-cases.

First is the case when both b0 and b1 expand the dictionary, D1 =

{(bt, at), (bt+1, at+1)} ∪DTe−1
, where DTe−1

is the dictionary from the pre-

vious episode. Then:

G̃1 =




H̃Te1
0 0

0T 1 0

0T 0 1


 ,

H̃1 =

[
H̃Te1

0 0

h̃1

]
,

K̃1 =




K̃Te−1
k̃Te−1

(b0, a0) k̃Te−1
(b1, a1)

k̃Te−1
(b0, a0)T k((b0, a0), (b0, a0)) k((b0, a0), (b1, a1))

k̃Te−1
(b1, a1)T k((b0, a0), (b1, a1)) k((b1, a1), (b1, a1))




(D.20)

where h̃1 = [0T, 1,−γ]T. It can be then shown that W̃−1
1 becomes:

W̃−1
1 =

[
W̃−1

Te−1
0

0T (1 + γ2)σ2 +∆ktt

]
, (D.21)

where ∆ktt = k((b0, a0), (b0, a0))−2γk((b0, a0), (b1, a1))+γ2k((b1, a1), (b1, a1)).

W̃1 trivially follows from Eq. D.21 :

W̃1 =

[
W̃Te−1

0

0T 1
v1

]
, (D.22)
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where v1 = (1 + γ2)σ +∆ktt, yielding the expressions for µ̃1 and C̃1:

µ̃1 =




µ̃Te−1

0

0


+ c̃1

v1
d1,

C̃1 =




C̃Te−1
0 0

0T 0 0

0T 0 0


+ 1

v1
c̃1c̃

T

1 ,

v1 = (1 + γ2)σ2 +∆ktt,

d1 = r1,

c̃1 = h̃1.

(D.23)

Note that defining:

K̃0 =

[
K̃Te−1

k̃Te−1
(b1, a1)

k̃Te−1
(b0, a0)T k((b0, a0), (b0, a0))

]
,

1

v0
= 0,

µ0 =

[
µ̃Te−1

0

]
,

C̃0 =

[
C̃Te−1

0

0T 0

]
, (D.24)

and applying the same recursive expressions from Eq. D.14, yields the ex-

pressions in Eq D.23 since in this particular case it can be shown that

C̃0∆k̃0(b
t+1, at+1) = 0.

Second is the case when neither b0 nor b1 expand the dictionary, so

D1 = DTe−1
, K̃1 = K̃Te−1

.

G1 =




GTe−1

gT

0

gT

1


 ,

H̃1 =

[
H̃Te1

h̃T

1

]
,

(D.25)

where h̃1 = g0−γg1. When compared with Eq. D.7 it can bee seen that the

structure is very similar. If the same procedure is applied as in Section D.1.1
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D.1 GP-Sarsa for episodic tasks

it can be shown that the expressions for µ̃1 and C̃1 are the same if the

sufficient statistics at turn 0 were defined as

K̃0 = K̃Te−1
,

1
v0

= 0,

µ0 = µ̃Te−1
,

C̃0 = C̃Te−1
,

(D.26)

and then Eq. D.10 applied. This is also the case when bt+1 needs to be

included in the dictionary. In the case when bt needs to be included in the

dictionary but not bt+1, the sufficient statistics at turn 0 need to be defined

as in Eq. D.24 and then Eq. D.10 can be applied. Therefore, the expressions

at turn t+ 1 are the same regardless whether turn t is initial or not.

Algorithm 9 gives a full description of GP-Sarsa for episodic tasks. It

recalculates the sufficient statistics of the Gaussian process model for the

Q-function after every turn. The algorithm starts by initialising belief state

b. At the beginning of first episode action a is taken randomly, the dictio-

nary is initialised and the inverse Gram matrix trivially calculated (line 5).

Otherwise action a is taken ǫ-greedily with respect to the current estimate

of µ̃ (line 7) which determines the mean of the Q-value (Eq. D.1a). The

sufficient statistics are then copied from the end of the previous episode (line

9). If sparcification threshold is exceeded the dictionary is expanded and

the sufficient statistics recalculated (lines 10-14).

For each step in the episode action a is taken, reward r′ observed, belief

state updated b′ and next action a′ chosen ǫ-greedily (line 16). In the final

step of the episode, the system takes action a in the penultimate belief

state b, obtains the reward r′ and then moves to the final belief state b′.

As explained, the next belief state b′ and its residual are only taken into

consideration when step is not final, lines 17-20 and lines 33-35 respectively.

Also, only non-final belief states included in the dictionary (lines 24-30).
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Algorithm 9 Episodic GP-Sarsa

1: Initialise µ̃← [], C̃← [], c̃← [], d← 0, 1/v ← 0
2: for each episode do

3: Initialise b

4: if first episode then

5: choose a arbitrary, D = {(b, a)}, K̃−1 ← 1/k((b, a), (b, a))
6: else

7: choose action a = argmaxa k̃(b, a)
Tµ̃ or randomly with probability ǫ

8: end if

9: c̃← 0 {size |D|}, d← 0, 1/v ← 0
10: g← K̃−1k̃(b, a), δ ← k((b, a), (b, a))− k̃(b, a)Tg
11: if δ > ν then

12: D← {(b, a)} ∪D, K̃−1 ← 1

δ

[
δK̃−1 + ggT −g
−gT 1

]

13: g← [0, . . . , 0, 1]T {size |D|}, µ̃←

[
µ̃

0

]
, C̃←

[
C̃ 0

0T 0

]
, c̃←

[
c̃

0

]

14: end if

15: for each step in the episode do

16: Take action a, observe reward r′, update belief state b′, choose new action
a′ = argmaxa′ k̃(b′, a′)Tµ̃ or randomly with probability ǫ

17: if non-terminal step then

18: g← K̃−1k̃(b′, a′), δ ← k((b′, a′), (b′, a′))− k̃(b′, a′)Tg
19: ∆k̃← k̃(b, a)− γk̃(b′, a′)
20: else

21: g← [0] {size |D|}, δ ← 0, ∆k̃← k̃(b, a)
22: end if

23: d← γσ2

v
d+ r −∆k̃Tµ̃

24: if δ > ν then

25: D← {(b′, a′)} ∪D, K̃−1 ← 1

δ

[
δK̃−1 + ggT −g
−gT 1

]

26: g← [0, . . . , 0, 1]T, h̃← [gT,−γ]T

27: ∆ktt ← gT(k̃(b, a)− 2γk̃(b′, a′)) + γ2k((b′, a′), (b′, a′))

28: c̃← γσ2

v

[
c̃

0

]
+ h̃−

[
C̃∆k̃

0

]

29: v ← (1 + γ2)σ2 +∆ktt −∆k̃TC̃∆k̃+ 2γσ2

v
c̃∆k̃− γ2σ4

v

30: µ̃←

[
µ̃

0

]
, C̃←

[
C̃ 0

0T 0

]

31: else

32: h̃← g − γg, c̃← γσ2

v
c̃+ h̃− C̃∆k̃

33: if non-terminal step then

34: v ← (1 + γ2)σ2 +∆k̃T(c̃+ γσ2

v
c̃)− γ2σ4

v

35: else

36: v ← σ2 +∆k̃T(c̃+ γσ2

v
c̃)− γ2σ4

v

37: end if

38: end if

39: µ̃← µ̃+ c̃

v
d, C̃← C̃+ 1

v
c̃c̃T, b← b′, a← a′

40: end for

41: end for
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[1] M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, K. Yu,

and S. Young, “Training and evaluation of the HIS-POMDP dialogue

system in noise,” in Proceedings of SIGDIAL, 2008. i
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