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- Why do we need a simulated user (SU)? Al T

For training

" RL need lots of interaction to learn the policy

" Learning from real user
costly
time-consuming
" Learning from data
collecting interactable data is not easy

" Learning from SU

;
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For evaluation

"= Human evaluation

costly and time-consuming

hard to reproduce

= Automatic evaluation
success rate, rewards, ...

NLG metrics: not consistant with human evaluation

" Evaluating by SU is easy to reproduce, cross-model comparison
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- Different kinds of user simulation W%/

Summarize SU in different aspects

" Granularity

Semantic level

Natural Language level

template, retrieval, generation
" Methodology
n-gram: Bi-gram, graph model, bayesian model, HMM, ...
rule-based: agenda-based

data driven: Seg2Seq, inverse RL, adversarial model, ...

s
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- Previous studies W%/

non-DL approaches

" N-gram
" Graph based
" Agenda based

e



- Previous studies Al T

HEINRICH HEINE

SSSSSSSSSSSSSSSSSSSSS

N-grams SU (Eckert et al. 1997)

= Bi-gram model P(a,|a,,)
only looks on the latest system action
cannot produce coherent user behavious

the SU may produce illogical behaviour if the user goal changes
" Look longer history
" incorporate user goal into user state
" HMM (Cuayahuitl et al. 2005), Baysian model (Pietquin and Dutoit 2009)...
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Graph-based SU (Scheffler and Young, 2000) Transacton Type

/ From / To 2
Amount \ Account \ Account
/: Account}
alance ’\’O\ Name
" Not practicable for complex domain / ) )
uote ame ame
conflict? ‘ ‘

" All possible paths in a network

" Need extensive domain knowledge

) Choice point (probabalistic) :

@ : o Deterministic choice
Q Intention ;
Intention group

Figure 3: Partial structure for utterance construction in the
banking application.
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Agenda-based approach (Schatzmann et al. 2007)

" user state S is described as an agenda 4 and a goal G

" Example:
" type = bar : Sys0 Hello, how may I help you? : Sys 1 Ok, a wine bar. What pricerange?
Co = drinks = beer ] : - in form(type = bar) 7 - negate(drinks = beer) 7
| area = central ! inform(drinks = beer) inform(pricerange = cheap)
T name — inform(area = central) inform(area = central)
Ry = addr — A = request(name) i Ay = request(name)
phone = request(addr) request(addr)
- request(phone) request(phone)
_ | bye( I | byel) -
Usr 1 I’m looking for a nice bar serving beer. Usr 2 No, beer please!

" The probabilities can be learned from corpus or set manually

9
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- Summary of these models Al T

These models suffer from...

" |nability to take dialogue history
" Rigid structure to ensure coherent user behavior
" Need lots of labor effort for designing rules

" Domain dependent

.
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- Data-driven SU Al T
Seq2Seq models

" Semantic to Semantic

" Combined agenda-base with seg2seq
" Semantic to Utterence

" Hierarchical seq2seq

" comparison of different settings

.
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semantic level (El Asri et al., 2016)

® uniform selectagoal G = (C,R)

C: constraints, food-type, price range, ... ‘T T T’ ‘T e
R: requests, name, address, ...
_ , O-O-O-0O-O
context ¢, concatenated with Internal representation PO R B
. of the sequence of Q otion @1 az  as as
am ¢+ recent machine acts dialogue contexts : Decoder
inconsist;: inconsistency Q Q Q
const,: constraints status | I |
req: requests status &1 G o
Encoder

.



Seq2Seq SU Al T

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Example of the context vector

Machine output / User answer Machine acts Inconsistency vector ~ Constraints status ~ Requests status
Welcome! How may I help you? 0000000010 000000 001 10110111
greet

Is there a cheap restaurant downtown?

A cheese restaurant. 0000010001 000010 011 10110111
What is your budget? implicit-confirm, request

No, I said a cheap restaurant.

Panda express is a cheap 0100000100 000000 111 10110111
restaurant downtown. offer, inform

What is the address of this place?

Panda express is located 0100000100 000000 111 10111111
at 108 Queen street. offer, inform

Table 1: Examples of contexts in a dialogue with a restaurant-seeking system. The user goal has two constraints (cheap and downtown)
and one request (address).

.
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Experiment

" Dataset: DSTC2, DSTC3

" Baseline
Bi-gram, agenda-based

Sequence-to-one:
outputs a probability distribution over a predefined set of compound acts (size: 54)

" Measurement
# of correctly predicted dialog acts

F-score, i.e. precision =
’ p # of predicted dialog acts

.
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- Seq25eq SU At T

Result

" Average F-score on 50 runs

Dataset Bigram Agenda-based Sequence-to-one Sequence-to-sequence
DSTC?2 Validation 0.20 0.24 0.37 0.34
DSTC2 Test 0.09 0.18 0.29 0.27
DSTC3 Test o 0.13 0.19 0.18

" The Seq20ne is slightly better than Seq2Seq because it‘s an easier task
" The Seq2Seq has better scalability (the number of possible acts might grow)
" The recall is relatively low on larger actions space (54 in DSTC2, 94 in DSTC3)

.
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Combined agenda-based model with Seq2Seq model (Xiujun Li et al. 2017)

" Use the agenda-based model for planning
" If the dialog act can be found in templates then use templates

" Else use Seq2Seq model for NLG

.
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- Seq2Seq SU Al T

Semantic to Utterance (Kreyssig et al. 2018)

" System structure L Ontology sl J
The setting of Goal Generator and Feature l
Extractor is like (El Asri et al., 2016) l - ™

. . . E;?;l:::zr
The input sequence is Feature History [ Spoken Dialogue )
System Request-Vector
The output segence is User Utterance X ) Orig’i‘:a;:eg;‘f:f,;’:;_:{;gcmr
\
v
Pl P

Feature
History

Sequence to Sequence
User Utterance Model
<S0S> I would <SLOT_FOOD> food <EOS>
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Generate non-deterministic result

" Beam-search is often used to generate a sequence by RNNs

" Taking n beams with the highest probability P(W;ws_; ... wo|p)

<SOS> | would ..  <SLOT_FOOD> food <EOS>

" Sample n words per beam from the probability distribution

18 www.hhu.de
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Experiments — Cross-Model Evaluation

" The policy trained with NUS can perform

well on both SUs Train. Sim. Eval. Sim.
| NUS ABUS
" Qverfitting: the policy performing best Rew. Suc. Rew. Suc.
on the NUS was not the one on the ABUS NUS-best 13.0 98.0V1 | 133 998

ABUS-best | 1.53 71.5% | 13.8 99942
NUS-avg 124 96.6 112 94.0
ABUS-avg | -7.6 455 13.5 995

Table 2: Results for policies trained for 4000 di-
alogues on NUS and ABUS when tested on both
USs for 1000 dialogues. Five policies with differ-
ent initialisations were trained for each US. Both
average and best results are shown.

.
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Experiments — Cross-Model Evaluation

" |n five seeds for NUS, the performance is all better with less data

" This behavior was not observed for the policies trained with the ABUS

Train. Sim. Eval. Sim. Train. Sim. Eval. Sim.
NUS ABUS NUS ABUS
Rew. Suc. Rew. Suc. Rew. Suc. | Rew. Suc.
NUS-best 13.0 98.0M | 13.3 99.8 NUS-best 122 959 | 13.9 99.9\2
ABUS-best | 1.53 71.51 | 13.8 99.942 ABUS-best | -4.0 54.8 | 13.2 99.0
NUS-avg 124 96.6 112 940 NUS-avg 120 954 | 122 973
ABUS-avg | -7.6 455 | 135 995 ABUS-avg | -9.48 423 | 12.8 984

Table 2: Results for policies trained for 4000 di-  Table 3: As Table 2 but trained for 1000 dialogues.

.
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Experiments — human Evaluation

" The NUS performs better

" The overfitting is also observed, the Training Simulator | Human Evaluation
best performing policy was the policy Rew. Suc.
that performed best on the other US NUS - My 134 L8

NUS - N 13.8 93.4
ABUS - A, 13.3 90.0
ABUS - A; 13.1 88.5

Table 4: Real User Evaluation. Results over 250
dialogues with human users. N7 and A; per-
formed best on the NUS. N, and A, performed
best on the ABUS. Rewards are not comparable to
Table 2 and 3 since all user goals were achievable.

.
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- Seq25eq SU At T

Discussion

" Less labelling for generate natural language compared with semantic response

" NUS excelled on both evaluation tasks

.
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Hierarchical User Simulator (HUS) (Gur et al. 2018)

" An end-to-end hierarichical seq2seq approach

" Without any feature extraction and external state tracking annotations

= . hC — C. R \ et .

Encode user goal: h* = Enc(e®; 0,) : o : T

N S I S . i i E inform <E0S> é

" Encode system turn: hy = Enc(e”i; 0g) L . T >

" Encode dialogue history L mow e Voo mm B
hD = pt R R

h = Enc({hi}._.; 6p)

— b ey

" Lcrossent: Cross-entropy error between o )
candidate and correct user sequence @ T

Fig, 2: HUS model: Boxes are RNN cells, colors indicate parameter sharing.

.
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Variational HUS (VHUS)

" The output of HUS is deteministic

" Add a Gaussian distribution generator .

" Sample 2, ~N(z|uy, Z,)
Uy = W,h{_1 + b,
>, = Wshf_ | + bs

" The decoder will be initialized with h? = FC([h?; z,])

" KL divergence between prior and posterior distribution

Lyar = aKL(N(z|py, Z,)IN (zl1y, 2y))
in order to make sure the behavior will be consistent

.
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Goal Reqularization (VHUSReg)

" Generating long dialogues when user turns
diverge from the initial user goal

" Initialize the history encoder with zero,
then h? = FC([hP; h¢ ])

" Minimize the divergence between user goal
and user turn token

Lreg = |Ibf — BOW(O)|| + ||bY — BOW (Up)|| + ||bf — BOW(S,)|]

.
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Experiment results

= SL

Supervised end-to-end policy

Map user utterence to system actions
" RL policy outperformed SL

Especially on EM, the SL may stuck in
local minima and cannot recover some
of the slot-value pairs

" RLis more robust, even with weaker SU

.

Exact Partial Dialogue
Match (%) | Match(%) Length
75.67 943 12.03
HUS 94.69 98.07 745
+ dialooue loneth 86.1 96.51 9.615
gue leng 9433 982 7.076
82.52 95.69 11.8005
VHUS 95.53 08.43 7.803
88.8 97.08 7.92
HUSReg 96.19 98.56 6.878
91.90 97.67 8.0555
VHUSReg 05.93 98.52 6.905

HEINRICH HEINE
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SL
RL
SL
RL
SL
RL
SL
RL
SL
RL
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Human evaluation

" The dialogue is tranfered to natural language by template

" All SUs get better score and less standard deviation

Model Average Score (Standard Deviation)
Agenda-based 4.56 (0.859)
HUS+dialogue length 4.86 (0.545)
VHUS 4.88 (0.472)
HUSReg 4.88 (0.452)
VHUSReg 4.83 (0.594)

.
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Comparison between different settings (Shi et al. 2019)

" Compare different settings

Policy: agenda-based and model-based
NLG: template, retrieval, and generation

Evaluation: direct and indirect

.
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Automatic direct evaluation

" Use perplexity, vocabulary size and utterence length to measure NLG quality
" Retrieval-based models have the largest Vocab

" Retrieval-based model can generate the longest sentences, but End-to-End
model is also doing good

" Although the PPL is the largest for retrieval-based models, it also has the biggest
Vocab and longest utterence length

Simulators NLU DM NLG PPL Vocab Utt | Hu.Fl Hu.Co Hu.Go Hu.Div Hu.All

Agenda-Template (AgenT) SL | Agenda | Template | 10.32 180 9.65 | 4.07 4.56 4.88 24 4.50
Agenda-Retrieval (AgenR) SL | Agenda | Retrieval | 3390 383 11.61 | 3.50 4.22 4.58 39 3.74
Agenda-Generation (AgenG) | SL | Agenda | Generation | 7.49 159 8.07 | 3.32 3.92 4.64 2.5 3.36

SL-Template (SLT) SL Template | 9.32 192 9.83 | 4.80 4.80 4.98 2.6 4.74
SL-Retrieval (SLR) SL Retrieval | 29.36 346 11.06 | 4.40 3.99 4.88 4.3 4.01
SL-End2End (SLE) End-to-End 1347 205 1095 | 3.32 2.62 3.18 2.7 2.64

.
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Human direct evaluation

" Fluency: Templates. They are written by human
" Coherence: Agenda-based in general better than model-based
" Goal adherence: Infusing the goal is more difficult for End2End.

" Diversity: Retrieval-based is good at diversity but is not as good in fluency
Template-based outperformed on fluency but suffer from diversity
Generation-based suffer from generic responses

Simulators NLU DM NLG PPL Vocab Utt | Hu.Fl Hu.Co Hu.Go Hu.Div Hu.All

Agenda-Template (AgenT) SL | Agenda | Template | 10.32 180 9.65 | 4.07 4.56 4.88 24 4.50
Agenda-Retrieval (AgenR) SL | Agenda | Retrieval | 3390 383 11.61 | 3.50 4.22 4.58 3.9 3.74
Agenda-Generation (AgenG) | SL | Agenda | Generation | 7.49 159 8.07 | 3.32 3.92 4.64 2.5 3.36

SL-Template (SLT) SL Template | 9.32 192 9.83 | 4.80 4.80 4.98 2.6 4.74
SL-Retrieval (SLR) SL Retrieval | 29.36 346 11.06 | 4.40 3.99 4.88 4.3 4.01
SL-End2End (SLE) End-to-End 1347 205 1095 | 3.32 2.62 3.18 2.7 2.64

.
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Automatic indirect evaluation

" Model-based converge faster.
Capture the major path instead of
exploring all the possible paths i

" Retrieval-based converged slower MWW
0.75 . P S

< AgenT - AgenR AgenG +~ SLT = SLR # SLE

because of larger vocabulary size

Success rate
o
(3]
LS
N\T ~
) X 2

»\b«ggg Q%Q’gg A’Lq’gg 66999

Number of episodes

;
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" The system can handle more language variations will do better on Solved ratio

" The efficiency doesn’t always correlated to the dialog length (AgenG and SLE)

" The satisfaction is not only related to solved ration but also efficiency and latency

" Naturalness is related to solved ratio (overall performance)

RL System | Solved Ratio | Satisfaction | Efficiency | Naturalness | Rule-likeness | Dialog Length | Auto Success
Sys-AgenT | 0.814 £0.06 | 4.29 £0.20 | 4.35 £0.21 | 3.96 +0.23 4.49 +0.15 8.95 +£0.38 0.983 +0.01
Sys-AgenR | 0.906 +0.05 4.52 +0.15 | 4.45 +0.16 | 4.23 £+0.19 4.59 +0.14 8.73 +£0.31 0.925 +0.02
Sys-AgenG | 0.904 +0.05 438 +0.18 | 4.46 +0.19 | 4.33 +0.17 4.51 £0.16 9.48 +0.45 0.980 +0.01
Sys-SLT 0.781 +0.07 | 3.87 +£0.22 | 3.81 +0.22 | 3.63 £+0.22 4.08 +0.21 9.61 +£0.76 0.978 +£0.01
Sys-SLR 0.823 +£0.05 | 4.23 +£0.20 | 4.20 £0.10 | 3.99 4+0.20 442 +0.17 8.92 +0.70 0.965 +0.01
Sys-SLE 0.607 £0.06 342 +0.22 | 341 +0.23 | 3.59 +0.20 4.22 +0.20 9.44 +0.69 0.798 +£0.03

;
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Cross model evaluation

" Agenda-based with retrieval-based NLG has the best performance
This result agrees with the human evaluation

" More type of SU will give better quality of evaluation
User SLT prefers SLT (0.975) than AgenG (0.965), but in overall AgenG is better

" The diagnal is usuall the highest. RL policy is not general over all kind of users

Usr\Sys || Sys-AgenT | Sys-AgenR | Sys-AgenG | Sys-SLT | Sys-SLR | Sys-SLE
AgenT 0.975 0.960 0.790 0.305 0.300 0.200
AgenR 0.540 0.900 0.785 0.230 0.230 0.235
AgenG 0.725 0.975 0.950 0.355 0.300 0.20

SLT 0.985 0.985 0.985 0.990 0.965 0.730
SLR 0.925 0.975 0.965 0.975 0.935 0.630
SLE 0.770 0.820 0.815 0.840 0.705 0.770

Average 0.820 0.935 0.882 0.616 0.573 0.461

:
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Discussion

" Model-based perform relatively worse

" Model-based doesn’t explor all possible paths (Act6)

- AgenT AgenR AgenG @ SLT
50.00% B SLR 4 SLE

37.50% 1=
25.00%

12.50%

0.00% -
Act1 Act2 Act3 Act4d Acts Act6 Act7

Figure 5: Dialog act distribution comparison. Actl to
Act7 corresponds to the seven user dialog acts, “inform
restaurant type”, “inform restaurant type change”,
“ask info”, “make reservation”, “make reservation

» {3

change time”, “anything else”, and “goodbye”

.
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Summary

" The generating model may suffer from generating generatic results
" We can get better policy with more diverse output SU

" The policy of SU need to explore all possiblities

.
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Inverse RL (Chardramohan et al., 2011)

" The SU can be view asan MDP {S§,4,P,y}/R

= Reward function Rg(s,a) = 07 ¢(s,a) = Zé‘zl 0;0;(s,a)

= Q-function Q" (s,a) = E[Zfioyiri|so = 5,0y = a]

= Q"(s,a) = E[X207'0T¢(s,a)|so = s,a0 = a] = 0Tu"(s,a)

= 4™ (s, a) feature expectation can be model as the discounted measure of
features accorrding to system visitation frequency, given m trajectories (H! is the

length of the it" trajectorie), u™ (s, a) can be modeled as:
m H;j

K (s, @) = mzzy ®(st,al)

(=0 t=

.
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Algorithm

Algorithm 1 User simulation using imitation learning

I:
2:

N

Compute frexpert from dialogue corpus
Initiate IT with random policy 7predict = mo and compute

HMpredict

: Compute ¢ and 6 such that

t =max{ min 0" (fexpert —predict)} s.t. [|0]]* < 1

0 Tpredict €11

if ¢t < £ then Terminate

. end if

Train a new policy Tpredict for userMDP optimizing R =
67 ¢(s, a) with RL (LSPI).

: ComPUte Hpredict for Tpredict s IT «+ Tlpredict

Goto to step 3.

37

-

Feature expectations

expert redi
p p

~—

Reward
function
—_—

ct

<

HEINRICH HEINE
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—
®

SAS'
Samples

Reinforcement
Learning

www.hhu.de
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Summary

" We can train a MDP SU from a fix corpus
" |n the paper, they only conducted a simple experiment

" The cost of computing is a lot. (RL in the inner-loop)

;
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Collaboration-based (Didericksen et al. 2017)

" Collaboration-based SU utilizes the similarity
between different users to predict the user’s
next action

. /\, sztched Ongoing
u I_a bel prOpagathn: D?:;Ig Annotation Hpro;:?tim Trgjectory dialog dialog
M H o [e . Corpus orpus .
train a simple classification model on a part =) T : :
of the data to label the entire dataset == ' Yo
i : T L ® &
Easy to incorporate external knowledge, e.g. [or= 2 — oo
user profile to pre-filter the act candidates '+~ % p— "xt"
‘ utterance
" Can be run very fast . N

.
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Build a Conversational Agent Overnight (Shah et al. 2018)

‘”3?)‘;322?‘ J;:::g“;g‘;) APIClient  |—
" Build a dialogue system by M2M and crowdsourcing (=30 i)

" Collect daya by Wizard-of-Oz setup may suffer from | (@ Qutioe gonrstor,

Scenarios l

Need more efforts to filter errors H:W

Not cover all the interactions

Unfitting dialogues (too simplistic or too convoluted)

Dialogue
Outlines

(3) Paraphrases

(crowdsourced, ~6 hrs) ~
Paraphrased
Dialogues

ii. Validation (~4 hrs)

N
' Fully-labelled !
E Dataset |

(4) Train a dialogue model: Dialogue

(~1hr) Agent

.
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- Machine to Machine

Generating outline via self-play

" Qutlines are easier to generate

" Don’t need to generate complex and diverse language

Schema: User Profile: Book movie with name is Inside
) verbose: 0.8 Out and date is tomorrow. | want to buy tickets for Inside Out
movies: name, thealre, dale, flexible: 0.5 inform{intent=book_movie, for tomorrow.
time, ... asks_for repeat: 0.3 name=inside Out, date=tomorrow)
restaurants: name, cuisine, price, OK. Provide time [ Alright. What time would ]
location, ... User Goal: [ ack() request(time) ] you like to see the movie?
API Client: :
b°°k_-lms$2.6 ut Time is evening. Any time during the
N N — name—_n inform{time=evening) evening works for me.
Movies DB theatre=dont_care
| ! date=tomorrow Offer theatre is Cinemark 16
; \ time=evening and time is 6pm. [ gow ab::nt 21?0 6pm show at J
4 = k 16, inemark 1
Restaurants DB zlfyfgir 6);?:),9 Cinemark 16
\ J reserve_restaurant:
= cuisine=greek Agree. t good.
| location=near the theatre [ affirm() ] [ TH Noce ]
l ! time=after the movie
(a) Task Specification (b) Scenario (c) Outline (d) Paraphrase

.
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The rule-based methods The model-based methods

v More controllable v’ Learn user behaviour from corpus
v’ Generate all possible paths v’ Less labor effort

— Domain-dependent v" Adapt to new domain easilier

— Not scalable — Focus on main paths, not all

— Labor-consuming — Incoherence goal

.
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What’s next?

" Generate more various outputs and more humain-like behaviour
" Persona for SU

" Error models: ASR, ambiguity, ...

" How to use IRL, adversarial training for SU?

" Self-training via Machine-to-machine interaction

.
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